BilalMuftuoglu's picture
End of training
963da41 verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-hasta-85-fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7272727272727273

deit-base-distilled-patch16-224-hasta-85-fold1

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9744
  • Accuracy: 0.7273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.2772 0.0909
No log 2.0 2 1.1448 0.1818
No log 3.0 3 0.9744 0.7273
No log 4.0 4 0.9234 0.7273
No log 5.0 5 1.0760 0.7273
No log 6.0 6 1.3222 0.7273
No log 7.0 7 1.5248 0.7273
No log 8.0 8 1.6139 0.7273
No log 9.0 9 1.6711 0.7273
0.3554 10.0 10 1.7354 0.7273
0.3554 11.0 11 1.6721 0.7273
0.3554 12.0 12 1.5988 0.7273
0.3554 13.0 13 1.5960 0.7273
0.3554 14.0 14 1.5832 0.7273
0.3554 15.0 15 1.5683 0.7273
0.3554 16.0 16 1.5774 0.7273
0.3554 17.0 17 1.6468 0.7273
0.3554 18.0 18 1.7091 0.7273
0.3554 19.0 19 1.7276 0.7273
0.1335 20.0 20 1.7052 0.7273
0.1335 21.0 21 1.6426 0.7273
0.1335 22.0 22 1.5316 0.7273
0.1335 23.0 23 1.4017 0.7273
0.1335 24.0 24 1.3009 0.7273
0.1335 25.0 25 1.2864 0.7273
0.1335 26.0 26 1.3934 0.7273
0.1335 27.0 27 1.4436 0.7273
0.1335 28.0 28 1.5752 0.7273
0.1335 29.0 29 1.6211 0.7273
0.0769 30.0 30 1.5944 0.7273
0.0769 31.0 31 1.5283 0.7273
0.0769 32.0 32 1.4341 0.7273
0.0769 33.0 33 1.4512 0.7273
0.0769 34.0 34 1.4980 0.7273
0.0769 35.0 35 1.5803 0.7273
0.0769 36.0 36 1.7676 0.7273
0.0769 37.0 37 1.8581 0.7273
0.0769 38.0 38 1.8816 0.7273
0.0769 39.0 39 1.8317 0.7273
0.0505 40.0 40 1.7445 0.7273
0.0505 41.0 41 1.6965 0.7273
0.0505 42.0 42 1.7210 0.7273
0.0505 43.0 43 1.6903 0.7273
0.0505 44.0 44 1.6944 0.7273
0.0505 45.0 45 1.6923 0.7273
0.0505 46.0 46 1.7470 0.7273
0.0505 47.0 47 1.7502 0.7273
0.0505 48.0 48 1.7739 0.7273
0.0505 49.0 49 1.7819 0.7273
0.0255 50.0 50 1.8200 0.7273
0.0255 51.0 51 1.8122 0.7273
0.0255 52.0 52 1.7939 0.7273
0.0255 53.0 53 1.7736 0.7273
0.0255 54.0 54 1.7411 0.7273
0.0255 55.0 55 1.6773 0.7273
0.0255 56.0 56 1.6556 0.7273
0.0255 57.0 57 1.6767 0.7273
0.0255 58.0 58 1.6623 0.7273
0.0255 59.0 59 1.6553 0.7273
0.0227 60.0 60 1.6682 0.7273
0.0227 61.0 61 1.6209 0.7273
0.0227 62.0 62 1.6188 0.7273
0.0227 63.0 63 1.6919 0.7273
0.0227 64.0 64 1.7957 0.7273
0.0227 65.0 65 1.8750 0.7273
0.0227 66.0 66 1.9156 0.7273
0.0227 67.0 67 1.9163 0.7273
0.0227 68.0 68 1.8969 0.7273
0.0227 69.0 69 1.8814 0.7273
0.0185 70.0 70 1.8715 0.7273
0.0185 71.0 71 1.8892 0.7273
0.0185 72.0 72 1.9383 0.7273
0.0185 73.0 73 1.9627 0.7273
0.0185 74.0 74 2.0154 0.7273
0.0185 75.0 75 2.0326 0.7273
0.0185 76.0 76 2.0425 0.7273
0.0185 77.0 77 2.0586 0.7273
0.0185 78.0 78 2.0582 0.7273
0.0185 79.0 79 2.0863 0.7273
0.0246 80.0 80 2.1233 0.7273
0.0246 81.0 81 2.1527 0.7273
0.0246 82.0 82 2.1760 0.7273
0.0246 83.0 83 2.1907 0.7273
0.0246 84.0 84 2.1859 0.7273
0.0246 85.0 85 2.1654 0.7273
0.0246 86.0 86 2.1479 0.7273
0.0246 87.0 87 2.1194 0.7273
0.0246 88.0 88 2.1059 0.7273
0.0246 89.0 89 2.1032 0.7273
0.0228 90.0 90 2.0999 0.7273
0.0228 91.0 91 2.1037 0.7273
0.0228 92.0 92 2.1026 0.7273
0.0228 93.0 93 2.1132 0.7273
0.0228 94.0 94 2.1302 0.7273
0.0228 95.0 95 2.1453 0.7273
0.0228 96.0 96 2.1634 0.7273
0.0228 97.0 97 2.1762 0.7273
0.0228 98.0 98 2.1859 0.7273
0.0228 99.0 99 2.1916 0.7273
0.0142 100.0 100 2.1933 0.7273

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1