metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-hasta-85-fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7272727272727273
deit-base-distilled-patch16-224-hasta-85-fold1
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9744
- Accuracy: 0.7273
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 1.2772 | 0.0909 |
No log | 2.0 | 2 | 1.1448 | 0.1818 |
No log | 3.0 | 3 | 0.9744 | 0.7273 |
No log | 4.0 | 4 | 0.9234 | 0.7273 |
No log | 5.0 | 5 | 1.0760 | 0.7273 |
No log | 6.0 | 6 | 1.3222 | 0.7273 |
No log | 7.0 | 7 | 1.5248 | 0.7273 |
No log | 8.0 | 8 | 1.6139 | 0.7273 |
No log | 9.0 | 9 | 1.6711 | 0.7273 |
0.3554 | 10.0 | 10 | 1.7354 | 0.7273 |
0.3554 | 11.0 | 11 | 1.6721 | 0.7273 |
0.3554 | 12.0 | 12 | 1.5988 | 0.7273 |
0.3554 | 13.0 | 13 | 1.5960 | 0.7273 |
0.3554 | 14.0 | 14 | 1.5832 | 0.7273 |
0.3554 | 15.0 | 15 | 1.5683 | 0.7273 |
0.3554 | 16.0 | 16 | 1.5774 | 0.7273 |
0.3554 | 17.0 | 17 | 1.6468 | 0.7273 |
0.3554 | 18.0 | 18 | 1.7091 | 0.7273 |
0.3554 | 19.0 | 19 | 1.7276 | 0.7273 |
0.1335 | 20.0 | 20 | 1.7052 | 0.7273 |
0.1335 | 21.0 | 21 | 1.6426 | 0.7273 |
0.1335 | 22.0 | 22 | 1.5316 | 0.7273 |
0.1335 | 23.0 | 23 | 1.4017 | 0.7273 |
0.1335 | 24.0 | 24 | 1.3009 | 0.7273 |
0.1335 | 25.0 | 25 | 1.2864 | 0.7273 |
0.1335 | 26.0 | 26 | 1.3934 | 0.7273 |
0.1335 | 27.0 | 27 | 1.4436 | 0.7273 |
0.1335 | 28.0 | 28 | 1.5752 | 0.7273 |
0.1335 | 29.0 | 29 | 1.6211 | 0.7273 |
0.0769 | 30.0 | 30 | 1.5944 | 0.7273 |
0.0769 | 31.0 | 31 | 1.5283 | 0.7273 |
0.0769 | 32.0 | 32 | 1.4341 | 0.7273 |
0.0769 | 33.0 | 33 | 1.4512 | 0.7273 |
0.0769 | 34.0 | 34 | 1.4980 | 0.7273 |
0.0769 | 35.0 | 35 | 1.5803 | 0.7273 |
0.0769 | 36.0 | 36 | 1.7676 | 0.7273 |
0.0769 | 37.0 | 37 | 1.8581 | 0.7273 |
0.0769 | 38.0 | 38 | 1.8816 | 0.7273 |
0.0769 | 39.0 | 39 | 1.8317 | 0.7273 |
0.0505 | 40.0 | 40 | 1.7445 | 0.7273 |
0.0505 | 41.0 | 41 | 1.6965 | 0.7273 |
0.0505 | 42.0 | 42 | 1.7210 | 0.7273 |
0.0505 | 43.0 | 43 | 1.6903 | 0.7273 |
0.0505 | 44.0 | 44 | 1.6944 | 0.7273 |
0.0505 | 45.0 | 45 | 1.6923 | 0.7273 |
0.0505 | 46.0 | 46 | 1.7470 | 0.7273 |
0.0505 | 47.0 | 47 | 1.7502 | 0.7273 |
0.0505 | 48.0 | 48 | 1.7739 | 0.7273 |
0.0505 | 49.0 | 49 | 1.7819 | 0.7273 |
0.0255 | 50.0 | 50 | 1.8200 | 0.7273 |
0.0255 | 51.0 | 51 | 1.8122 | 0.7273 |
0.0255 | 52.0 | 52 | 1.7939 | 0.7273 |
0.0255 | 53.0 | 53 | 1.7736 | 0.7273 |
0.0255 | 54.0 | 54 | 1.7411 | 0.7273 |
0.0255 | 55.0 | 55 | 1.6773 | 0.7273 |
0.0255 | 56.0 | 56 | 1.6556 | 0.7273 |
0.0255 | 57.0 | 57 | 1.6767 | 0.7273 |
0.0255 | 58.0 | 58 | 1.6623 | 0.7273 |
0.0255 | 59.0 | 59 | 1.6553 | 0.7273 |
0.0227 | 60.0 | 60 | 1.6682 | 0.7273 |
0.0227 | 61.0 | 61 | 1.6209 | 0.7273 |
0.0227 | 62.0 | 62 | 1.6188 | 0.7273 |
0.0227 | 63.0 | 63 | 1.6919 | 0.7273 |
0.0227 | 64.0 | 64 | 1.7957 | 0.7273 |
0.0227 | 65.0 | 65 | 1.8750 | 0.7273 |
0.0227 | 66.0 | 66 | 1.9156 | 0.7273 |
0.0227 | 67.0 | 67 | 1.9163 | 0.7273 |
0.0227 | 68.0 | 68 | 1.8969 | 0.7273 |
0.0227 | 69.0 | 69 | 1.8814 | 0.7273 |
0.0185 | 70.0 | 70 | 1.8715 | 0.7273 |
0.0185 | 71.0 | 71 | 1.8892 | 0.7273 |
0.0185 | 72.0 | 72 | 1.9383 | 0.7273 |
0.0185 | 73.0 | 73 | 1.9627 | 0.7273 |
0.0185 | 74.0 | 74 | 2.0154 | 0.7273 |
0.0185 | 75.0 | 75 | 2.0326 | 0.7273 |
0.0185 | 76.0 | 76 | 2.0425 | 0.7273 |
0.0185 | 77.0 | 77 | 2.0586 | 0.7273 |
0.0185 | 78.0 | 78 | 2.0582 | 0.7273 |
0.0185 | 79.0 | 79 | 2.0863 | 0.7273 |
0.0246 | 80.0 | 80 | 2.1233 | 0.7273 |
0.0246 | 81.0 | 81 | 2.1527 | 0.7273 |
0.0246 | 82.0 | 82 | 2.1760 | 0.7273 |
0.0246 | 83.0 | 83 | 2.1907 | 0.7273 |
0.0246 | 84.0 | 84 | 2.1859 | 0.7273 |
0.0246 | 85.0 | 85 | 2.1654 | 0.7273 |
0.0246 | 86.0 | 86 | 2.1479 | 0.7273 |
0.0246 | 87.0 | 87 | 2.1194 | 0.7273 |
0.0246 | 88.0 | 88 | 2.1059 | 0.7273 |
0.0246 | 89.0 | 89 | 2.1032 | 0.7273 |
0.0228 | 90.0 | 90 | 2.0999 | 0.7273 |
0.0228 | 91.0 | 91 | 2.1037 | 0.7273 |
0.0228 | 92.0 | 92 | 2.1026 | 0.7273 |
0.0228 | 93.0 | 93 | 2.1132 | 0.7273 |
0.0228 | 94.0 | 94 | 2.1302 | 0.7273 |
0.0228 | 95.0 | 95 | 2.1453 | 0.7273 |
0.0228 | 96.0 | 96 | 2.1634 | 0.7273 |
0.0228 | 97.0 | 97 | 2.1762 | 0.7273 |
0.0228 | 98.0 | 98 | 2.1859 | 0.7273 |
0.0228 | 99.0 | 99 | 2.1916 | 0.7273 |
0.0142 | 100.0 | 100 | 2.1933 | 0.7273 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1