BilalMuftuoglu's picture
End of training
7b55d99 verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-hasta-75-fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9166666666666666

deit-base-distilled-patch16-224-hasta-75-fold5

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6803
  • Accuracy: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.1508 0.4167
No log 2.0 2 0.9687 0.4167
No log 3.0 3 0.6803 0.9167
No log 4.0 4 0.4213 0.9167
No log 5.0 5 0.2979 0.9167
No log 6.0 6 0.2848 0.9167
No log 7.0 7 0.3062 0.9167
No log 8.0 8 0.3740 0.9167
No log 9.0 9 0.4779 0.9167
0.3289 10.0 10 0.4269 0.9167
0.3289 11.0 11 0.2878 0.9167
0.3289 12.0 12 0.2469 0.9167
0.3289 13.0 13 0.2483 0.9167
0.3289 14.0 14 0.2873 0.9167
0.3289 15.0 15 0.3418 0.9167
0.3289 16.0 16 0.3439 0.9167
0.3289 17.0 17 0.3146 0.9167
0.3289 18.0 18 0.3273 0.9167
0.3289 19.0 19 0.3637 0.9167
0.1373 20.0 20 0.4029 0.9167
0.1373 21.0 21 0.3972 0.9167
0.1373 22.0 22 0.3716 0.9167
0.1373 23.0 23 0.3374 0.9167
0.1373 24.0 24 0.2715 0.9167
0.1373 25.0 25 0.2576 0.9167
0.1373 26.0 26 0.2621 0.9167
0.1373 27.0 27 0.2693 0.9167
0.1373 28.0 28 0.2653 0.9167
0.1373 29.0 29 0.2811 0.8333
0.0748 30.0 30 0.3335 0.8333
0.0748 31.0 31 0.3538 0.8333
0.0748 32.0 32 0.2896 0.8333
0.0748 33.0 33 0.2242 0.9167
0.0748 34.0 34 0.2258 0.9167
0.0748 35.0 35 0.2552 0.9167
0.0748 36.0 36 0.3066 0.8333
0.0748 37.0 37 0.3862 0.8333
0.0748 38.0 38 0.4926 0.8333
0.0748 39.0 39 0.6405 0.75
0.0581 40.0 40 0.6536 0.75
0.0581 41.0 41 0.6079 0.8333
0.0581 42.0 42 0.4895 0.8333
0.0581 43.0 43 0.4001 0.8333
0.0581 44.0 44 0.3493 0.8333
0.0581 45.0 45 0.3068 0.8333
0.0581 46.0 46 0.2859 0.9167
0.0581 47.0 47 0.2943 0.9167
0.0581 48.0 48 0.2983 0.9167
0.0581 49.0 49 0.3183 0.9167
0.041 50.0 50 0.3299 0.9167
0.041 51.0 51 0.3353 0.9167
0.041 52.0 52 0.3243 0.9167
0.041 53.0 53 0.3057 0.9167
0.041 54.0 54 0.2817 0.9167
0.041 55.0 55 0.2535 0.9167
0.041 56.0 56 0.2444 0.9167
0.041 57.0 57 0.2356 0.9167
0.041 58.0 58 0.2455 0.9167
0.041 59.0 59 0.2519 0.9167
0.0333 60.0 60 0.2529 0.9167
0.0333 61.0 61 0.2582 0.9167
0.0333 62.0 62 0.2589 0.9167
0.0333 63.0 63 0.2585 0.9167
0.0333 64.0 64 0.2540 0.9167
0.0333 65.0 65 0.2631 0.9167
0.0333 66.0 66 0.2697 0.9167
0.0333 67.0 67 0.2714 0.9167
0.0333 68.0 68 0.2740 0.9167
0.0333 69.0 69 0.2738 0.9167
0.0221 70.0 70 0.2803 0.9167
0.0221 71.0 71 0.2755 0.9167
0.0221 72.0 72 0.2711 0.9167
0.0221 73.0 73 0.2706 0.9167
0.0221 74.0 74 0.2752 0.9167
0.0221 75.0 75 0.2650 0.9167
0.0221 76.0 76 0.2605 0.9167
0.0221 77.0 77 0.2650 0.9167
0.0221 78.0 78 0.2731 0.9167
0.0221 79.0 79 0.2746 0.9167
0.0151 80.0 80 0.2776 0.9167
0.0151 81.0 81 0.2773 0.9167
0.0151 82.0 82 0.2793 0.9167
0.0151 83.0 83 0.2747 0.9167
0.0151 84.0 84 0.2755 0.9167
0.0151 85.0 85 0.2746 0.9167
0.0151 86.0 86 0.2741 0.9167
0.0151 87.0 87 0.2739 0.9167
0.0151 88.0 88 0.2781 0.9167
0.0151 89.0 89 0.2838 0.9167
0.0213 90.0 90 0.2855 0.9167
0.0213 91.0 91 0.2862 0.9167
0.0213 92.0 92 0.2857 0.9167
0.0213 93.0 93 0.2824 0.9167
0.0213 94.0 94 0.2758 0.9167
0.0213 95.0 95 0.2698 0.9167
0.0213 96.0 96 0.2625 0.9167
0.0213 97.0 97 0.2566 0.9167
0.0213 98.0 98 0.2517 0.9167
0.0213 99.0 99 0.2491 0.9167
0.0314 100.0 100 0.2478 0.9167

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1