BilalMuftuoglu's picture
End of training
9e6cc52 verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-hasta-75-fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9166666666666666

deit-base-distilled-patch16-224-hasta-75-fold4

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4466
  • Accuracy: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.3783 0.0
No log 2.0 2 1.1470 0.1667
No log 3.0 3 0.7684 0.75
No log 4.0 4 0.4466 0.9167
No log 5.0 5 0.3116 0.9167
No log 6.0 6 0.3024 0.9167
No log 7.0 7 0.3113 0.9167
No log 8.0 8 0.3526 0.9167
No log 9.0 9 0.5370 0.9167
0.3843 10.0 10 0.6259 0.8333
0.3843 11.0 11 0.4979 0.9167
0.3843 12.0 12 0.3555 0.9167
0.3843 13.0 13 0.3132 0.9167
0.3843 14.0 14 0.3054 0.9167
0.3843 15.0 15 0.3262 0.9167
0.3843 16.0 16 0.3495 0.9167
0.3843 17.0 17 0.3211 0.9167
0.3843 18.0 18 0.2993 0.9167
0.3843 19.0 19 0.3174 0.9167
0.1412 20.0 20 0.3221 0.8333
0.1412 21.0 21 0.3248 0.8333
0.1412 22.0 22 0.3245 0.8333
0.1412 23.0 23 0.3412 0.8333
0.1412 24.0 24 0.3021 0.8333
0.1412 25.0 25 0.2038 0.9167
0.1412 26.0 26 0.1856 0.9167
0.1412 27.0 27 0.2126 0.9167
0.1412 28.0 28 0.2161 0.9167
0.1412 29.0 29 0.1838 0.9167
0.0596 30.0 30 0.1688 0.9167
0.0596 31.0 31 0.1827 0.9167
0.0596 32.0 32 0.1860 0.9167
0.0596 33.0 33 0.1819 0.9167
0.0596 34.0 34 0.1868 0.9167
0.0596 35.0 35 0.2212 0.8333
0.0596 36.0 36 0.2478 0.8333
0.0596 37.0 37 0.2653 0.8333
0.0596 38.0 38 0.2093 0.9167
0.0596 39.0 39 0.1924 0.9167
0.0541 40.0 40 0.1789 0.9167
0.0541 41.0 41 0.1646 0.9167
0.0541 42.0 42 0.1635 0.9167
0.0541 43.0 43 0.1611 0.9167
0.0541 44.0 44 0.1592 0.9167
0.0541 45.0 45 0.1754 0.9167
0.0541 46.0 46 0.1908 0.9167
0.0541 47.0 47 0.1859 0.9167
0.0541 48.0 48 0.1687 0.9167
0.0541 49.0 49 0.1646 0.9167
0.0306 50.0 50 0.1663 0.9167
0.0306 51.0 51 0.1609 0.9167
0.0306 52.0 52 0.1791 0.9167
0.0306 53.0 53 0.2029 0.9167
0.0306 54.0 54 0.2205 0.9167
0.0306 55.0 55 0.2358 0.9167
0.0306 56.0 56 0.2392 0.9167
0.0306 57.0 57 0.2591 0.9167
0.0306 58.0 58 0.2536 0.9167
0.0306 59.0 59 0.2678 0.9167
0.0369 60.0 60 0.2655 0.9167
0.0369 61.0 61 0.2782 0.9167
0.0369 62.0 62 0.3050 0.9167
0.0369 63.0 63 0.3199 0.9167
0.0369 64.0 64 0.3130 0.9167
0.0369 65.0 65 0.3063 0.9167
0.0369 66.0 66 0.2885 0.9167
0.0369 67.0 67 0.2654 0.9167
0.0369 68.0 68 0.2478 0.9167
0.0369 69.0 69 0.2358 0.9167
0.0241 70.0 70 0.2106 0.9167
0.0241 71.0 71 0.2047 0.9167
0.0241 72.0 72 0.2100 0.9167
0.0241 73.0 73 0.2092 0.9167
0.0241 74.0 74 0.2261 0.9167
0.0241 75.0 75 0.2380 0.9167
0.0241 76.0 76 0.2644 0.9167
0.0241 77.0 77 0.2972 0.9167
0.0241 78.0 78 0.3053 0.9167
0.0241 79.0 79 0.3133 0.9167
0.0234 80.0 80 0.3051 0.9167
0.0234 81.0 81 0.3001 0.9167
0.0234 82.0 82 0.2921 0.9167
0.0234 83.0 83 0.2899 0.9167
0.0234 84.0 84 0.2798 0.9167
0.0234 85.0 85 0.2641 0.9167
0.0234 86.0 86 0.2514 0.9167
0.0234 87.0 87 0.2419 0.9167
0.0234 88.0 88 0.2282 0.9167
0.0234 89.0 89 0.2174 0.9167
0.0197 90.0 90 0.2070 0.9167
0.0197 91.0 91 0.2006 0.9167
0.0197 92.0 92 0.1977 0.9167
0.0197 93.0 93 0.1956 0.9167
0.0197 94.0 94 0.1946 0.9167
0.0197 95.0 95 0.1931 0.9167
0.0197 96.0 96 0.1920 0.9167
0.0197 97.0 97 0.1922 0.9167
0.0197 98.0 98 0.1926 0.9167
0.0197 99.0 99 0.1942 0.9167
0.0295 100.0 100 0.1950 0.9167

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1