metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-hasta-75-fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1
deit-base-distilled-patch16-224-hasta-75-fold1
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1907
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 1.0839 | 0.4167 |
No log | 2.0 | 2 | 0.8911 | 0.6667 |
No log | 3.0 | 3 | 0.5837 | 0.75 |
No log | 4.0 | 4 | 0.3481 | 0.9167 |
No log | 5.0 | 5 | 0.2815 | 0.9167 |
No log | 6.0 | 6 | 0.2839 | 0.9167 |
No log | 7.0 | 7 | 0.2838 | 0.9167 |
No log | 8.0 | 8 | 0.2692 | 0.9167 |
No log | 9.0 | 9 | 0.2701 | 0.9167 |
0.3107 | 10.0 | 10 | 0.3363 | 0.9167 |
0.3107 | 11.0 | 11 | 0.3816 | 0.9167 |
0.3107 | 12.0 | 12 | 0.3427 | 0.9167 |
0.3107 | 13.0 | 13 | 0.2728 | 0.9167 |
0.3107 | 14.0 | 14 | 0.2273 | 0.9167 |
0.3107 | 15.0 | 15 | 0.2052 | 0.9167 |
0.3107 | 16.0 | 16 | 0.1840 | 0.9167 |
0.3107 | 17.0 | 17 | 0.1907 | 1.0 |
0.3107 | 18.0 | 18 | 0.1761 | 1.0 |
0.3107 | 19.0 | 19 | 0.1302 | 1.0 |
0.1503 | 20.0 | 20 | 0.0937 | 1.0 |
0.1503 | 21.0 | 21 | 0.0767 | 1.0 |
0.1503 | 22.0 | 22 | 0.0642 | 1.0 |
0.1503 | 23.0 | 23 | 0.0730 | 1.0 |
0.1503 | 24.0 | 24 | 0.0937 | 1.0 |
0.1503 | 25.0 | 25 | 0.0713 | 1.0 |
0.1503 | 26.0 | 26 | 0.0476 | 1.0 |
0.1503 | 27.0 | 27 | 0.0462 | 1.0 |
0.1503 | 28.0 | 28 | 0.0553 | 1.0 |
0.1503 | 29.0 | 29 | 0.0689 | 1.0 |
0.068 | 30.0 | 30 | 0.0676 | 1.0 |
0.068 | 31.0 | 31 | 0.0534 | 1.0 |
0.068 | 32.0 | 32 | 0.0472 | 1.0 |
0.068 | 33.0 | 33 | 0.0575 | 1.0 |
0.068 | 34.0 | 34 | 0.0614 | 1.0 |
0.068 | 35.0 | 35 | 0.0596 | 1.0 |
0.068 | 36.0 | 36 | 0.0503 | 1.0 |
0.068 | 37.0 | 37 | 0.0571 | 1.0 |
0.068 | 38.0 | 38 | 0.0694 | 1.0 |
0.068 | 39.0 | 39 | 0.0869 | 0.9167 |
0.0416 | 40.0 | 40 | 0.1039 | 0.9167 |
0.0416 | 41.0 | 41 | 0.1130 | 0.9167 |
0.0416 | 42.0 | 42 | 0.1127 | 0.9167 |
0.0416 | 43.0 | 43 | 0.1028 | 0.9167 |
0.0416 | 44.0 | 44 | 0.0840 | 0.9167 |
0.0416 | 45.0 | 45 | 0.0703 | 0.9167 |
0.0416 | 46.0 | 46 | 0.0564 | 1.0 |
0.0416 | 47.0 | 47 | 0.0572 | 1.0 |
0.0416 | 48.0 | 48 | 0.0689 | 0.9167 |
0.0416 | 49.0 | 49 | 0.0967 | 0.9167 |
0.048 | 50.0 | 50 | 0.1440 | 0.9167 |
0.048 | 51.0 | 51 | 0.1667 | 0.9167 |
0.048 | 52.0 | 52 | 0.1823 | 0.9167 |
0.048 | 53.0 | 53 | 0.1734 | 0.9167 |
0.048 | 54.0 | 54 | 0.1543 | 0.9167 |
0.048 | 55.0 | 55 | 0.1383 | 0.9167 |
0.048 | 56.0 | 56 | 0.1266 | 0.9167 |
0.048 | 57.0 | 57 | 0.1013 | 0.9167 |
0.048 | 58.0 | 58 | 0.0830 | 0.9167 |
0.048 | 59.0 | 59 | 0.0780 | 0.9167 |
0.0118 | 60.0 | 60 | 0.0756 | 0.9167 |
0.0118 | 61.0 | 61 | 0.0723 | 0.9167 |
0.0118 | 62.0 | 62 | 0.0563 | 1.0 |
0.0118 | 63.0 | 63 | 0.0470 | 1.0 |
0.0118 | 64.0 | 64 | 0.0469 | 1.0 |
0.0118 | 65.0 | 65 | 0.0522 | 1.0 |
0.0118 | 66.0 | 66 | 0.0576 | 1.0 |
0.0118 | 67.0 | 67 | 0.0639 | 1.0 |
0.0118 | 68.0 | 68 | 0.0827 | 0.9167 |
0.0118 | 69.0 | 69 | 0.1089 | 0.9167 |
0.0271 | 70.0 | 70 | 0.1343 | 0.9167 |
0.0271 | 71.0 | 71 | 0.1514 | 0.9167 |
0.0271 | 72.0 | 72 | 0.1552 | 0.9167 |
0.0271 | 73.0 | 73 | 0.1500 | 0.9167 |
0.0271 | 74.0 | 74 | 0.1392 | 0.9167 |
0.0271 | 75.0 | 75 | 0.1229 | 0.9167 |
0.0271 | 76.0 | 76 | 0.1009 | 0.9167 |
0.0271 | 77.0 | 77 | 0.0858 | 0.9167 |
0.0271 | 78.0 | 78 | 0.0844 | 0.9167 |
0.0271 | 79.0 | 79 | 0.0855 | 0.9167 |
0.0462 | 80.0 | 80 | 0.0972 | 0.9167 |
0.0462 | 81.0 | 81 | 0.1140 | 0.9167 |
0.0462 | 82.0 | 82 | 0.1398 | 0.9167 |
0.0462 | 83.0 | 83 | 0.1639 | 0.9167 |
0.0462 | 84.0 | 84 | 0.1842 | 0.9167 |
0.0462 | 85.0 | 85 | 0.1938 | 0.9167 |
0.0462 | 86.0 | 86 | 0.2000 | 0.9167 |
0.0462 | 87.0 | 87 | 0.2008 | 0.9167 |
0.0462 | 88.0 | 88 | 0.1949 | 0.9167 |
0.0462 | 89.0 | 89 | 0.1896 | 0.9167 |
0.022 | 90.0 | 90 | 0.1798 | 0.9167 |
0.022 | 91.0 | 91 | 0.1700 | 0.9167 |
0.022 | 92.0 | 92 | 0.1617 | 0.9167 |
0.022 | 93.0 | 93 | 0.1549 | 0.9167 |
0.022 | 94.0 | 94 | 0.1492 | 0.9167 |
0.022 | 95.0 | 95 | 0.1447 | 0.9167 |
0.022 | 96.0 | 96 | 0.1435 | 0.9167 |
0.022 | 97.0 | 97 | 0.1431 | 0.9167 |
0.022 | 98.0 | 98 | 0.1418 | 0.9167 |
0.022 | 99.0 | 99 | 0.1411 | 0.9167 |
0.0236 | 100.0 | 100 | 0.1408 | 0.9167 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1