metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-hasta-65-fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6388888888888888
deit-base-distilled-patch16-224-hasta-65-fold4
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.1109
- Accuracy: 0.6389
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.5714 | 1 | 1.2683 | 0.2778 |
No log | 1.7143 | 3 | 1.1169 | 0.3056 |
No log | 2.8571 | 5 | 1.2963 | 0.2778 |
No log | 4.0 | 7 | 1.2729 | 0.2778 |
No log | 4.5714 | 8 | 1.1327 | 0.2778 |
1.1554 | 5.7143 | 10 | 1.0658 | 0.3889 |
1.1554 | 6.8571 | 12 | 1.1513 | 0.3611 |
1.1554 | 8.0 | 14 | 1.1799 | 0.3889 |
1.1554 | 8.5714 | 15 | 1.1289 | 0.3611 |
1.1554 | 9.7143 | 17 | 1.0167 | 0.4167 |
1.1554 | 10.8571 | 19 | 1.0074 | 0.5 |
0.9967 | 12.0 | 21 | 0.9982 | 0.5 |
0.9967 | 12.5714 | 22 | 0.9707 | 0.5278 |
0.9967 | 13.7143 | 24 | 0.9401 | 0.6111 |
0.9967 | 14.8571 | 26 | 1.0155 | 0.6111 |
0.9967 | 16.0 | 28 | 1.1357 | 0.4444 |
0.9967 | 16.5714 | 29 | 1.1284 | 0.5 |
0.8472 | 17.7143 | 31 | 1.1840 | 0.4167 |
0.8472 | 18.8571 | 33 | 1.3015 | 0.4444 |
0.8472 | 20.0 | 35 | 0.9755 | 0.5 |
0.8472 | 20.5714 | 36 | 0.9602 | 0.5278 |
0.8472 | 21.7143 | 38 | 1.0950 | 0.4444 |
0.7133 | 22.8571 | 40 | 1.0607 | 0.4722 |
0.7133 | 24.0 | 42 | 0.9963 | 0.5833 |
0.7133 | 24.5714 | 43 | 1.0235 | 0.5833 |
0.7133 | 25.7143 | 45 | 1.0872 | 0.5556 |
0.7133 | 26.8571 | 47 | 1.0526 | 0.5833 |
0.7133 | 28.0 | 49 | 1.1579 | 0.5278 |
0.5648 | 28.5714 | 50 | 1.2434 | 0.4444 |
0.5648 | 29.7143 | 52 | 1.1653 | 0.5556 |
0.5648 | 30.8571 | 54 | 1.0947 | 0.5556 |
0.5648 | 32.0 | 56 | 1.1531 | 0.5833 |
0.5648 | 32.5714 | 57 | 1.1268 | 0.5833 |
0.5648 | 33.7143 | 59 | 1.0664 | 0.5833 |
0.4429 | 34.8571 | 61 | 1.1503 | 0.5556 |
0.4429 | 36.0 | 63 | 1.3473 | 0.5 |
0.4429 | 36.5714 | 64 | 1.2786 | 0.5 |
0.4429 | 37.7143 | 66 | 1.0905 | 0.6111 |
0.4429 | 38.8571 | 68 | 1.0917 | 0.6111 |
0.4313 | 40.0 | 70 | 1.2079 | 0.5556 |
0.4313 | 40.5714 | 71 | 1.2501 | 0.5556 |
0.4313 | 41.7143 | 73 | 1.1789 | 0.6111 |
0.4313 | 42.8571 | 75 | 1.1126 | 0.5833 |
0.4313 | 44.0 | 77 | 1.1109 | 0.6389 |
0.4313 | 44.5714 | 78 | 1.1236 | 0.6389 |
0.3764 | 45.7143 | 80 | 1.2211 | 0.6111 |
0.3764 | 46.8571 | 82 | 1.3021 | 0.5278 |
0.3764 | 48.0 | 84 | 1.3182 | 0.5556 |
0.3764 | 48.5714 | 85 | 1.2830 | 0.5556 |
0.3764 | 49.7143 | 87 | 1.2503 | 0.5833 |
0.3764 | 50.8571 | 89 | 1.1926 | 0.6389 |
0.3441 | 52.0 | 91 | 1.2092 | 0.6111 |
0.3441 | 52.5714 | 92 | 1.2266 | 0.6111 |
0.3441 | 53.7143 | 94 | 1.2685 | 0.5278 |
0.3441 | 54.8571 | 96 | 1.3098 | 0.4722 |
0.3441 | 56.0 | 98 | 1.3069 | 0.4722 |
0.3441 | 56.5714 | 99 | 1.3021 | 0.4722 |
0.322 | 57.1429 | 100 | 1.3012 | 0.5 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1