BilalMuftuoglu's picture
End of training
59015ea verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-hasta-65-fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6388888888888888

deit-base-distilled-patch16-224-hasta-65-fold4

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1109
  • Accuracy: 0.6389

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.5714 1 1.2683 0.2778
No log 1.7143 3 1.1169 0.3056
No log 2.8571 5 1.2963 0.2778
No log 4.0 7 1.2729 0.2778
No log 4.5714 8 1.1327 0.2778
1.1554 5.7143 10 1.0658 0.3889
1.1554 6.8571 12 1.1513 0.3611
1.1554 8.0 14 1.1799 0.3889
1.1554 8.5714 15 1.1289 0.3611
1.1554 9.7143 17 1.0167 0.4167
1.1554 10.8571 19 1.0074 0.5
0.9967 12.0 21 0.9982 0.5
0.9967 12.5714 22 0.9707 0.5278
0.9967 13.7143 24 0.9401 0.6111
0.9967 14.8571 26 1.0155 0.6111
0.9967 16.0 28 1.1357 0.4444
0.9967 16.5714 29 1.1284 0.5
0.8472 17.7143 31 1.1840 0.4167
0.8472 18.8571 33 1.3015 0.4444
0.8472 20.0 35 0.9755 0.5
0.8472 20.5714 36 0.9602 0.5278
0.8472 21.7143 38 1.0950 0.4444
0.7133 22.8571 40 1.0607 0.4722
0.7133 24.0 42 0.9963 0.5833
0.7133 24.5714 43 1.0235 0.5833
0.7133 25.7143 45 1.0872 0.5556
0.7133 26.8571 47 1.0526 0.5833
0.7133 28.0 49 1.1579 0.5278
0.5648 28.5714 50 1.2434 0.4444
0.5648 29.7143 52 1.1653 0.5556
0.5648 30.8571 54 1.0947 0.5556
0.5648 32.0 56 1.1531 0.5833
0.5648 32.5714 57 1.1268 0.5833
0.5648 33.7143 59 1.0664 0.5833
0.4429 34.8571 61 1.1503 0.5556
0.4429 36.0 63 1.3473 0.5
0.4429 36.5714 64 1.2786 0.5
0.4429 37.7143 66 1.0905 0.6111
0.4429 38.8571 68 1.0917 0.6111
0.4313 40.0 70 1.2079 0.5556
0.4313 40.5714 71 1.2501 0.5556
0.4313 41.7143 73 1.1789 0.6111
0.4313 42.8571 75 1.1126 0.5833
0.4313 44.0 77 1.1109 0.6389
0.4313 44.5714 78 1.1236 0.6389
0.3764 45.7143 80 1.2211 0.6111
0.3764 46.8571 82 1.3021 0.5278
0.3764 48.0 84 1.3182 0.5556
0.3764 48.5714 85 1.2830 0.5556
0.3764 49.7143 87 1.2503 0.5833
0.3764 50.8571 89 1.1926 0.6389
0.3441 52.0 91 1.2092 0.6111
0.3441 52.5714 92 1.2266 0.6111
0.3441 53.7143 94 1.2685 0.5278
0.3441 54.8571 96 1.3098 0.4722
0.3441 56.0 98 1.3069 0.4722
0.3441 56.5714 99 1.3021 0.4722
0.322 57.1429 100 1.3012 0.5

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1