BilalMuftuoglu's picture
End of training
a717840 verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-hasta-55-fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6388888888888888

deit-base-distilled-patch16-224-hasta-55-fold5

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9258
  • Accuracy: 0.6389

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.5714 1 1.1479 0.2778
No log 1.7143 3 1.1506 0.4444
No log 2.8571 5 1.2127 0.3889
No log 4.0 7 1.0517 0.4167
No log 4.5714 8 1.0113 0.5833
1.0752 5.7143 10 1.0014 0.4722
1.0752 6.8571 12 0.9754 0.5556
1.0752 8.0 14 0.9684 0.6111
1.0752 8.5714 15 0.9598 0.5
1.0752 9.7143 17 0.9350 0.5278
1.0752 10.8571 19 1.0848 0.5
0.8688 12.0 21 0.9479 0.5
0.8688 12.5714 22 0.9568 0.4722
0.8688 13.7143 24 0.9859 0.5833
0.8688 14.8571 26 1.0116 0.5278
0.8688 16.0 28 1.0542 0.4722
0.8688 16.5714 29 0.9993 0.5
0.7636 17.7143 31 0.9896 0.5278
0.7636 18.8571 33 0.9693 0.5278
0.7636 20.0 35 0.9705 0.5556
0.7636 20.5714 36 0.9990 0.5833
0.7636 21.7143 38 1.0442 0.5833
0.5868 22.8571 40 1.0241 0.5
0.5868 24.0 42 0.9458 0.5
0.5868 24.5714 43 0.9391 0.5556
0.5868 25.7143 45 0.9626 0.5278
0.5868 26.8571 47 0.9699 0.5278
0.5868 28.0 49 0.9504 0.5
0.4816 28.5714 50 0.9226 0.4722
0.4816 29.7143 52 0.9353 0.5278
0.4816 30.8571 54 0.9030 0.5556
0.4816 32.0 56 0.8948 0.5278
0.4816 32.5714 57 0.9272 0.5278
0.4816 33.7143 59 0.9202 0.5278
0.3909 34.8571 61 0.9052 0.5833
0.3909 36.0 63 0.9258 0.6389
0.3909 36.5714 64 0.9267 0.5833
0.3909 37.7143 66 0.9902 0.5556
0.3909 38.8571 68 1.0495 0.5278
0.3124 40.0 70 0.9900 0.5278
0.3124 40.5714 71 0.9510 0.5278
0.3124 41.7143 73 0.9531 0.5833
0.3124 42.8571 75 0.9439 0.5278
0.3124 44.0 77 0.9521 0.5278
0.3124 44.5714 78 0.9531 0.5278
0.3225 45.7143 80 0.9551 0.5
0.3225 46.8571 82 0.9520 0.5
0.3225 48.0 84 0.9464 0.5278
0.3225 48.5714 85 0.9409 0.5278
0.3225 49.7143 87 0.9471 0.5833
0.3225 50.8571 89 0.9646 0.5833
0.2829 52.0 91 0.9805 0.5833
0.2829 52.5714 92 0.9747 0.5833
0.2829 53.7143 94 0.9646 0.5833
0.2829 54.8571 96 0.9659 0.5833
0.2829 56.0 98 0.9644 0.5833
0.2829 56.5714 99 0.9646 0.5833
0.272 57.1429 100 0.9648 0.5833

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1