BilalMuftuoglu's picture
End of training
55be82c verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-hasta-55-fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6666666666666666

deit-base-distilled-patch16-224-hasta-55-fold2

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0232
  • Accuracy: 0.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.5714 1 1.3241 0.3611
No log 1.7143 3 1.1598 0.3056
No log 2.8571 5 1.1928 0.3889
No log 4.0 7 1.1229 0.3333
No log 4.5714 8 1.1111 0.3333
1.13 5.7143 10 1.1062 0.3611
1.13 6.8571 12 1.0655 0.4722
1.13 8.0 14 1.0527 0.3889
1.13 8.5714 15 1.0448 0.4444
1.13 9.7143 17 0.9955 0.5556
1.13 10.8571 19 0.9819 0.5556
0.9629 12.0 21 0.9722 0.5
0.9629 12.5714 22 0.9777 0.4444
0.9629 13.7143 24 0.9126 0.5556
0.9629 14.8571 26 0.9932 0.5556
0.9629 16.0 28 0.9946 0.5833
0.9629 16.5714 29 0.9690 0.5556
0.822 17.7143 31 0.9163 0.5833
0.822 18.8571 33 0.9799 0.6389
0.822 20.0 35 0.9273 0.6389
0.822 20.5714 36 0.9008 0.6389
0.822 21.7143 38 1.0305 0.5
0.7066 22.8571 40 0.9330 0.5833
0.7066 24.0 42 0.9151 0.5833
0.7066 24.5714 43 0.9214 0.6111
0.7066 25.7143 45 0.9322 0.6111
0.7066 26.8571 47 1.0534 0.5833
0.7066 28.0 49 1.1223 0.5556
0.5702 28.5714 50 1.0081 0.5833
0.5702 29.7143 52 0.8680 0.6389
0.5702 30.8571 54 0.9259 0.6111
0.5702 32.0 56 0.9936 0.6111
0.5702 32.5714 57 0.9762 0.6111
0.5702 33.7143 59 0.9298 0.6111
0.4903 34.8571 61 0.9352 0.6111
0.4903 36.0 63 0.9919 0.5833
0.4903 36.5714 64 0.9661 0.5833
0.4903 37.7143 66 0.9764 0.6389
0.4903 38.8571 68 0.9909 0.6389
0.3959 40.0 70 0.9906 0.6389
0.3959 40.5714 71 0.9789 0.6389
0.3959 41.7143 73 0.9529 0.6389
0.3959 42.8571 75 0.9729 0.6389
0.3959 44.0 77 1.0425 0.6111
0.3959 44.5714 78 1.0531 0.6111
0.3792 45.7143 80 0.9800 0.5833
0.3792 46.8571 82 0.9609 0.5833
0.3792 48.0 84 0.9820 0.5833
0.3792 48.5714 85 1.0252 0.6389
0.3792 49.7143 87 1.0592 0.6111
0.3792 50.8571 89 1.0232 0.6667
0.3267 52.0 91 0.9972 0.6111
0.3267 52.5714 92 0.9925 0.6111
0.3267 53.7143 94 1.0007 0.5833
0.3267 54.8571 96 1.0169 0.5833
0.3267 56.0 98 1.0304 0.5833
0.3267 56.5714 99 1.0360 0.6111
0.2959 57.1429 100 1.0385 0.6111

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1