metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-85-fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9318181818181818
deit-base-distilled-patch16-224-85-fold4
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2141
- Accuracy: 0.9318
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 2 | 0.6100 | 0.7273 |
No log | 2.0 | 4 | 0.6938 | 0.7045 |
No log | 3.0 | 6 | 0.7568 | 0.7045 |
No log | 4.0 | 8 | 0.6140 | 0.7045 |
0.5388 | 5.0 | 10 | 0.4976 | 0.75 |
0.5388 | 6.0 | 12 | 0.4809 | 0.7273 |
0.5388 | 7.0 | 14 | 0.5276 | 0.7273 |
0.5388 | 8.0 | 16 | 0.4455 | 0.7955 |
0.5388 | 9.0 | 18 | 0.3915 | 0.8409 |
0.4154 | 10.0 | 20 | 0.5070 | 0.7955 |
0.4154 | 11.0 | 22 | 0.3747 | 0.8182 |
0.4154 | 12.0 | 24 | 0.3027 | 0.8864 |
0.4154 | 13.0 | 26 | 0.3053 | 0.8636 |
0.4154 | 14.0 | 28 | 0.3194 | 0.8409 |
0.3258 | 15.0 | 30 | 0.3134 | 0.8864 |
0.3258 | 16.0 | 32 | 0.2925 | 0.8864 |
0.3258 | 17.0 | 34 | 0.2449 | 0.8864 |
0.3258 | 18.0 | 36 | 0.2308 | 0.8864 |
0.3258 | 19.0 | 38 | 0.2141 | 0.9318 |
0.2528 | 20.0 | 40 | 0.2330 | 0.9318 |
0.2528 | 21.0 | 42 | 0.2173 | 0.9318 |
0.2528 | 22.0 | 44 | 0.2450 | 0.9091 |
0.2528 | 23.0 | 46 | 0.2549 | 0.9091 |
0.2528 | 24.0 | 48 | 0.4341 | 0.75 |
0.175 | 25.0 | 50 | 0.2358 | 0.9091 |
0.175 | 26.0 | 52 | 0.2828 | 0.8864 |
0.175 | 27.0 | 54 | 0.2236 | 0.9091 |
0.175 | 28.0 | 56 | 0.2591 | 0.8636 |
0.175 | 29.0 | 58 | 0.2702 | 0.8864 |
0.169 | 30.0 | 60 | 0.2910 | 0.8636 |
0.169 | 31.0 | 62 | 0.3594 | 0.9091 |
0.169 | 32.0 | 64 | 0.4246 | 0.8864 |
0.169 | 33.0 | 66 | 0.2655 | 0.8864 |
0.169 | 34.0 | 68 | 0.2581 | 0.8864 |
0.1336 | 35.0 | 70 | 0.2494 | 0.8409 |
0.1336 | 36.0 | 72 | 0.2438 | 0.8636 |
0.1336 | 37.0 | 74 | 0.3246 | 0.8636 |
0.1336 | 38.0 | 76 | 0.2887 | 0.8409 |
0.1336 | 39.0 | 78 | 0.3559 | 0.8409 |
0.1281 | 40.0 | 80 | 0.3274 | 0.8864 |
0.1281 | 41.0 | 82 | 0.3371 | 0.8409 |
0.1281 | 42.0 | 84 | 0.3902 | 0.8409 |
0.1281 | 43.0 | 86 | 0.3100 | 0.8409 |
0.1281 | 44.0 | 88 | 0.3113 | 0.8636 |
0.136 | 45.0 | 90 | 0.3244 | 0.8409 |
0.136 | 46.0 | 92 | 0.3765 | 0.8864 |
0.136 | 47.0 | 94 | 0.3838 | 0.8864 |
0.136 | 48.0 | 96 | 0.3845 | 0.7955 |
0.136 | 49.0 | 98 | 0.3910 | 0.7955 |
0.0934 | 50.0 | 100 | 0.4889 | 0.8636 |
0.0934 | 51.0 | 102 | 0.6680 | 0.8182 |
0.0934 | 52.0 | 104 | 0.4264 | 0.8864 |
0.0934 | 53.0 | 106 | 0.3266 | 0.8182 |
0.0934 | 54.0 | 108 | 0.3168 | 0.8864 |
0.0999 | 55.0 | 110 | 0.3671 | 0.8182 |
0.0999 | 56.0 | 112 | 0.4684 | 0.8182 |
0.0999 | 57.0 | 114 | 0.4254 | 0.8182 |
0.0999 | 58.0 | 116 | 0.3195 | 0.8182 |
0.0999 | 59.0 | 118 | 0.3860 | 0.8864 |
0.1145 | 60.0 | 120 | 0.4805 | 0.8636 |
0.1145 | 61.0 | 122 | 0.3864 | 0.8182 |
0.1145 | 62.0 | 124 | 0.3347 | 0.8182 |
0.1145 | 63.0 | 126 | 0.3144 | 0.8182 |
0.1145 | 64.0 | 128 | 0.3267 | 0.8636 |
0.0769 | 65.0 | 130 | 0.3592 | 0.8636 |
0.0769 | 66.0 | 132 | 0.3520 | 0.8636 |
0.0769 | 67.0 | 134 | 0.3632 | 0.8636 |
0.0769 | 68.0 | 136 | 0.3955 | 0.8636 |
0.0769 | 69.0 | 138 | 0.4053 | 0.8182 |
0.0976 | 70.0 | 140 | 0.4272 | 0.8636 |
0.0976 | 71.0 | 142 | 0.4345 | 0.8409 |
0.0976 | 72.0 | 144 | 0.3943 | 0.8636 |
0.0976 | 73.0 | 146 | 0.3827 | 0.8636 |
0.0976 | 74.0 | 148 | 0.4133 | 0.8409 |
0.0981 | 75.0 | 150 | 0.4311 | 0.8409 |
0.0981 | 76.0 | 152 | 0.4126 | 0.8409 |
0.0981 | 77.0 | 154 | 0.3651 | 0.8636 |
0.0981 | 78.0 | 156 | 0.3511 | 0.8182 |
0.0981 | 79.0 | 158 | 0.3625 | 0.8636 |
0.085 | 80.0 | 160 | 0.3607 | 0.8636 |
0.085 | 81.0 | 162 | 0.3470 | 0.8409 |
0.085 | 82.0 | 164 | 0.3639 | 0.8409 |
0.085 | 83.0 | 166 | 0.3750 | 0.8409 |
0.085 | 84.0 | 168 | 0.3726 | 0.7955 |
0.0831 | 85.0 | 170 | 0.3740 | 0.8182 |
0.0831 | 86.0 | 172 | 0.3807 | 0.8636 |
0.0831 | 87.0 | 174 | 0.3875 | 0.8636 |
0.0831 | 88.0 | 176 | 0.3886 | 0.8409 |
0.0831 | 89.0 | 178 | 0.4017 | 0.7955 |
0.0811 | 90.0 | 180 | 0.4271 | 0.7955 |
0.0811 | 91.0 | 182 | 0.4293 | 0.7955 |
0.0811 | 92.0 | 184 | 0.4243 | 0.7727 |
0.0811 | 93.0 | 186 | 0.4088 | 0.7727 |
0.0811 | 94.0 | 188 | 0.3986 | 0.7955 |
0.0692 | 95.0 | 190 | 0.3963 | 0.8182 |
0.0692 | 96.0 | 192 | 0.3987 | 0.8636 |
0.0692 | 97.0 | 194 | 0.4020 | 0.8636 |
0.0692 | 98.0 | 196 | 0.4015 | 0.8636 |
0.0692 | 99.0 | 198 | 0.4009 | 0.8636 |
0.0644 | 100.0 | 200 | 0.4002 | 0.8636 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1