BilalMuftuoglu's picture
End of training
6f0d373 verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-85-fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9318181818181818

deit-base-distilled-patch16-224-85-fold4

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2141
  • Accuracy: 0.9318

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 0.6100 0.7273
No log 2.0 4 0.6938 0.7045
No log 3.0 6 0.7568 0.7045
No log 4.0 8 0.6140 0.7045
0.5388 5.0 10 0.4976 0.75
0.5388 6.0 12 0.4809 0.7273
0.5388 7.0 14 0.5276 0.7273
0.5388 8.0 16 0.4455 0.7955
0.5388 9.0 18 0.3915 0.8409
0.4154 10.0 20 0.5070 0.7955
0.4154 11.0 22 0.3747 0.8182
0.4154 12.0 24 0.3027 0.8864
0.4154 13.0 26 0.3053 0.8636
0.4154 14.0 28 0.3194 0.8409
0.3258 15.0 30 0.3134 0.8864
0.3258 16.0 32 0.2925 0.8864
0.3258 17.0 34 0.2449 0.8864
0.3258 18.0 36 0.2308 0.8864
0.3258 19.0 38 0.2141 0.9318
0.2528 20.0 40 0.2330 0.9318
0.2528 21.0 42 0.2173 0.9318
0.2528 22.0 44 0.2450 0.9091
0.2528 23.0 46 0.2549 0.9091
0.2528 24.0 48 0.4341 0.75
0.175 25.0 50 0.2358 0.9091
0.175 26.0 52 0.2828 0.8864
0.175 27.0 54 0.2236 0.9091
0.175 28.0 56 0.2591 0.8636
0.175 29.0 58 0.2702 0.8864
0.169 30.0 60 0.2910 0.8636
0.169 31.0 62 0.3594 0.9091
0.169 32.0 64 0.4246 0.8864
0.169 33.0 66 0.2655 0.8864
0.169 34.0 68 0.2581 0.8864
0.1336 35.0 70 0.2494 0.8409
0.1336 36.0 72 0.2438 0.8636
0.1336 37.0 74 0.3246 0.8636
0.1336 38.0 76 0.2887 0.8409
0.1336 39.0 78 0.3559 0.8409
0.1281 40.0 80 0.3274 0.8864
0.1281 41.0 82 0.3371 0.8409
0.1281 42.0 84 0.3902 0.8409
0.1281 43.0 86 0.3100 0.8409
0.1281 44.0 88 0.3113 0.8636
0.136 45.0 90 0.3244 0.8409
0.136 46.0 92 0.3765 0.8864
0.136 47.0 94 0.3838 0.8864
0.136 48.0 96 0.3845 0.7955
0.136 49.0 98 0.3910 0.7955
0.0934 50.0 100 0.4889 0.8636
0.0934 51.0 102 0.6680 0.8182
0.0934 52.0 104 0.4264 0.8864
0.0934 53.0 106 0.3266 0.8182
0.0934 54.0 108 0.3168 0.8864
0.0999 55.0 110 0.3671 0.8182
0.0999 56.0 112 0.4684 0.8182
0.0999 57.0 114 0.4254 0.8182
0.0999 58.0 116 0.3195 0.8182
0.0999 59.0 118 0.3860 0.8864
0.1145 60.0 120 0.4805 0.8636
0.1145 61.0 122 0.3864 0.8182
0.1145 62.0 124 0.3347 0.8182
0.1145 63.0 126 0.3144 0.8182
0.1145 64.0 128 0.3267 0.8636
0.0769 65.0 130 0.3592 0.8636
0.0769 66.0 132 0.3520 0.8636
0.0769 67.0 134 0.3632 0.8636
0.0769 68.0 136 0.3955 0.8636
0.0769 69.0 138 0.4053 0.8182
0.0976 70.0 140 0.4272 0.8636
0.0976 71.0 142 0.4345 0.8409
0.0976 72.0 144 0.3943 0.8636
0.0976 73.0 146 0.3827 0.8636
0.0976 74.0 148 0.4133 0.8409
0.0981 75.0 150 0.4311 0.8409
0.0981 76.0 152 0.4126 0.8409
0.0981 77.0 154 0.3651 0.8636
0.0981 78.0 156 0.3511 0.8182
0.0981 79.0 158 0.3625 0.8636
0.085 80.0 160 0.3607 0.8636
0.085 81.0 162 0.3470 0.8409
0.085 82.0 164 0.3639 0.8409
0.085 83.0 166 0.3750 0.8409
0.085 84.0 168 0.3726 0.7955
0.0831 85.0 170 0.3740 0.8182
0.0831 86.0 172 0.3807 0.8636
0.0831 87.0 174 0.3875 0.8636
0.0831 88.0 176 0.3886 0.8409
0.0831 89.0 178 0.4017 0.7955
0.0811 90.0 180 0.4271 0.7955
0.0811 91.0 182 0.4293 0.7955
0.0811 92.0 184 0.4243 0.7727
0.0811 93.0 186 0.4088 0.7727
0.0811 94.0 188 0.3986 0.7955
0.0692 95.0 190 0.3963 0.8182
0.0692 96.0 192 0.3987 0.8636
0.0692 97.0 194 0.4020 0.8636
0.0692 98.0 196 0.4015 0.8636
0.0692 99.0 198 0.4009 0.8636
0.0644 100.0 200 0.4002 0.8636

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1