metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-85-fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9318181818181818
deit-base-distilled-patch16-224-85-fold2
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1991
- Accuracy: 0.9318
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 2 | 1.2745 | 0.2727 |
No log | 2.0 | 4 | 0.8028 | 0.4091 |
No log | 3.0 | 6 | 0.7456 | 0.7045 |
No log | 4.0 | 8 | 0.7982 | 0.7045 |
0.7325 | 5.0 | 10 | 0.6233 | 0.7045 |
0.7325 | 6.0 | 12 | 0.5093 | 0.7273 |
0.7325 | 7.0 | 14 | 0.5566 | 0.7045 |
0.7325 | 8.0 | 16 | 0.6839 | 0.7045 |
0.7325 | 9.0 | 18 | 0.4821 | 0.75 |
0.4472 | 10.0 | 20 | 0.4365 | 0.7727 |
0.4472 | 11.0 | 22 | 0.5158 | 0.7273 |
0.4472 | 12.0 | 24 | 0.4196 | 0.8182 |
0.4472 | 13.0 | 26 | 0.3599 | 0.8409 |
0.4472 | 14.0 | 28 | 0.3604 | 0.8636 |
0.3483 | 15.0 | 30 | 0.3634 | 0.8182 |
0.3483 | 16.0 | 32 | 0.2803 | 0.8864 |
0.3483 | 17.0 | 34 | 0.2592 | 0.8864 |
0.3483 | 18.0 | 36 | 0.2655 | 0.9091 |
0.3483 | 19.0 | 38 | 0.2333 | 0.8864 |
0.2514 | 20.0 | 40 | 0.2590 | 0.8636 |
0.2514 | 21.0 | 42 | 0.2642 | 0.8864 |
0.2514 | 22.0 | 44 | 0.2637 | 0.8864 |
0.2514 | 23.0 | 46 | 0.1991 | 0.9318 |
0.2514 | 24.0 | 48 | 0.1941 | 0.9091 |
0.1847 | 25.0 | 50 | 0.1868 | 0.8864 |
0.1847 | 26.0 | 52 | 0.1828 | 0.8864 |
0.1847 | 27.0 | 54 | 0.1711 | 0.8864 |
0.1847 | 28.0 | 56 | 0.2423 | 0.8864 |
0.1847 | 29.0 | 58 | 0.2162 | 0.8864 |
0.1501 | 30.0 | 60 | 0.1854 | 0.9091 |
0.1501 | 31.0 | 62 | 0.3071 | 0.8636 |
0.1501 | 32.0 | 64 | 0.2435 | 0.8864 |
0.1501 | 33.0 | 66 | 0.1728 | 0.9091 |
0.1501 | 34.0 | 68 | 0.1644 | 0.9091 |
0.13 | 35.0 | 70 | 0.2768 | 0.8409 |
0.13 | 36.0 | 72 | 0.1539 | 0.9318 |
0.13 | 37.0 | 74 | 0.2580 | 0.9091 |
0.13 | 38.0 | 76 | 0.1783 | 0.8864 |
0.13 | 39.0 | 78 | 0.1782 | 0.8636 |
0.1357 | 40.0 | 80 | 0.2035 | 0.8864 |
0.1357 | 41.0 | 82 | 0.2117 | 0.8864 |
0.1357 | 42.0 | 84 | 0.1793 | 0.9091 |
0.1357 | 43.0 | 86 | 0.2002 | 0.9091 |
0.1357 | 44.0 | 88 | 0.2366 | 0.8864 |
0.105 | 45.0 | 90 | 0.2008 | 0.9318 |
0.105 | 46.0 | 92 | 0.2368 | 0.8864 |
0.105 | 47.0 | 94 | 0.2142 | 0.8864 |
0.105 | 48.0 | 96 | 0.2117 | 0.8864 |
0.105 | 49.0 | 98 | 0.2621 | 0.8864 |
0.1091 | 50.0 | 100 | 0.2231 | 0.8864 |
0.1091 | 51.0 | 102 | 0.1946 | 0.9318 |
0.1091 | 52.0 | 104 | 0.2001 | 0.9318 |
0.1091 | 53.0 | 106 | 0.2031 | 0.9091 |
0.1091 | 54.0 | 108 | 0.2078 | 0.9091 |
0.1054 | 55.0 | 110 | 0.2250 | 0.9091 |
0.1054 | 56.0 | 112 | 0.2180 | 0.9091 |
0.1054 | 57.0 | 114 | 0.1915 | 0.9318 |
0.1054 | 58.0 | 116 | 0.2227 | 0.8864 |
0.1054 | 59.0 | 118 | 0.2352 | 0.8864 |
0.0982 | 60.0 | 120 | 0.2329 | 0.8864 |
0.0982 | 61.0 | 122 | 0.2135 | 0.9091 |
0.0982 | 62.0 | 124 | 0.1949 | 0.8864 |
0.0982 | 63.0 | 126 | 0.2149 | 0.9318 |
0.0982 | 64.0 | 128 | 0.2435 | 0.9091 |
0.0808 | 65.0 | 130 | 0.2541 | 0.9091 |
0.0808 | 66.0 | 132 | 0.2447 | 0.9091 |
0.0808 | 67.0 | 134 | 0.1904 | 0.9318 |
0.0808 | 68.0 | 136 | 0.2437 | 0.9091 |
0.0808 | 69.0 | 138 | 0.3593 | 0.8864 |
0.0843 | 70.0 | 140 | 0.4187 | 0.8864 |
0.0843 | 71.0 | 142 | 0.3510 | 0.8864 |
0.0843 | 72.0 | 144 | 0.2315 | 0.9091 |
0.0843 | 73.0 | 146 | 0.2049 | 0.9091 |
0.0843 | 74.0 | 148 | 0.2150 | 0.9091 |
0.0942 | 75.0 | 150 | 0.2116 | 0.9091 |
0.0942 | 76.0 | 152 | 0.2014 | 0.9091 |
0.0942 | 77.0 | 154 | 0.2198 | 0.9091 |
0.0942 | 78.0 | 156 | 0.2538 | 0.9318 |
0.0942 | 79.0 | 158 | 0.2755 | 0.9318 |
0.0884 | 80.0 | 160 | 0.2491 | 0.9091 |
0.0884 | 81.0 | 162 | 0.2100 | 0.9091 |
0.0884 | 82.0 | 164 | 0.1977 | 0.9091 |
0.0884 | 83.0 | 166 | 0.1979 | 0.9091 |
0.0884 | 84.0 | 168 | 0.2145 | 0.9091 |
0.0637 | 85.0 | 170 | 0.2192 | 0.9091 |
0.0637 | 86.0 | 172 | 0.2055 | 0.9318 |
0.0637 | 87.0 | 174 | 0.1994 | 0.9318 |
0.0637 | 88.0 | 176 | 0.1975 | 0.9091 |
0.0637 | 89.0 | 178 | 0.1974 | 0.9091 |
0.0923 | 90.0 | 180 | 0.1965 | 0.9091 |
0.0923 | 91.0 | 182 | 0.1925 | 0.9091 |
0.0923 | 92.0 | 184 | 0.1942 | 0.9091 |
0.0923 | 93.0 | 186 | 0.1969 | 0.9318 |
0.0923 | 94.0 | 188 | 0.1949 | 0.9318 |
0.0657 | 95.0 | 190 | 0.1904 | 0.9318 |
0.0657 | 96.0 | 192 | 0.1877 | 0.9091 |
0.0657 | 97.0 | 194 | 0.1885 | 0.9091 |
0.0657 | 98.0 | 196 | 0.1902 | 0.9318 |
0.0657 | 99.0 | 198 | 0.1922 | 0.9318 |
0.0822 | 100.0 | 200 | 0.1932 | 0.9318 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1