BilalMuftuoglu's picture
End of training
0dc9497 verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-75-fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9069767441860465

deit-base-distilled-patch16-224-75-fold1

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3098
  • Accuracy: 0.9070

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 0.6477 0.6512
No log 2.0 4 0.6528 0.6977
No log 3.0 6 0.8096 0.6977
No log 4.0 8 0.7679 0.6977
0.5994 5.0 10 0.5482 0.6977
0.5994 6.0 12 0.4984 0.7442
0.5994 7.0 14 0.6156 0.6977
0.5994 8.0 16 0.5307 0.7674
0.5994 9.0 18 0.4036 0.7674
0.3806 10.0 20 0.4241 0.7907
0.3806 11.0 22 0.4263 0.8140
0.3806 12.0 24 0.6778 0.7442
0.3806 13.0 26 0.5885 0.7674
0.3806 14.0 28 0.6048 0.7907
0.273 15.0 30 0.5110 0.8140
0.273 16.0 32 0.3793 0.7442
0.273 17.0 34 0.3635 0.7907
0.273 18.0 36 0.3863 0.8140
0.273 19.0 38 0.3788 0.8372
0.2388 20.0 40 0.3390 0.8140
0.2388 21.0 42 0.4593 0.7907
0.2388 22.0 44 0.3441 0.8605
0.2388 23.0 46 0.5483 0.7907
0.2388 24.0 48 0.6399 0.7907
0.189 25.0 50 0.3333 0.8605
0.189 26.0 52 0.3326 0.8605
0.189 27.0 54 0.4150 0.7907
0.189 28.0 56 0.3420 0.8837
0.189 29.0 58 0.3649 0.8372
0.1718 30.0 60 0.3651 0.8605
0.1718 31.0 62 0.4676 0.8140
0.1718 32.0 64 0.3543 0.8605
0.1718 33.0 66 0.3209 0.8140
0.1718 34.0 68 0.3420 0.8605
0.1466 35.0 70 0.3800 0.8372
0.1466 36.0 72 0.6547 0.8140
0.1466 37.0 74 0.9743 0.7674
0.1466 38.0 76 0.6677 0.7907
0.1466 39.0 78 0.5691 0.8140
0.119 40.0 80 0.4796 0.8605
0.119 41.0 82 0.3243 0.8837
0.119 42.0 84 0.2969 0.8605
0.119 43.0 86 0.3637 0.8372
0.119 44.0 88 0.3098 0.9070
0.1123 45.0 90 0.3954 0.8837
0.1123 46.0 92 0.3197 0.9070
0.1123 47.0 94 0.3188 0.8372
0.1123 48.0 96 0.3100 0.8372
0.1123 49.0 98 0.3653 0.8605
0.1136 50.0 100 0.3527 0.8837
0.1136 51.0 102 0.3152 0.8605
0.1136 52.0 104 0.3277 0.8605
0.1136 53.0 106 0.3221 0.8837
0.1136 54.0 108 0.3438 0.8605
0.0858 55.0 110 0.4683 0.8605
0.0858 56.0 112 0.4511 0.8605
0.0858 57.0 114 0.3486 0.8605
0.0858 58.0 116 0.3594 0.8837
0.0858 59.0 118 0.3914 0.8605
0.084 60.0 120 0.4257 0.8837
0.084 61.0 122 0.4505 0.8837
0.084 62.0 124 0.4038 0.8605
0.084 63.0 126 0.3745 0.8372
0.084 64.0 128 0.3774 0.8140
0.0938 65.0 130 0.3712 0.8140
0.0938 66.0 132 0.3736 0.8140
0.0938 67.0 134 0.3840 0.8605
0.0938 68.0 136 0.3902 0.8605
0.0938 69.0 138 0.4105 0.8605
0.055 70.0 140 0.4498 0.8605
0.055 71.0 142 0.4954 0.8605
0.055 72.0 144 0.6397 0.8605
0.055 73.0 146 0.6271 0.8605
0.055 74.0 148 0.4821 0.8605
0.0755 75.0 150 0.3699 0.9070
0.0755 76.0 152 0.3303 0.8605
0.0755 77.0 154 0.3282 0.8837
0.0755 78.0 156 0.3181 0.8837
0.0755 79.0 158 0.3083 0.8605
0.0603 80.0 160 0.3170 0.8372
0.0603 81.0 162 0.3397 0.8372
0.0603 82.0 164 0.3538 0.8372
0.0603 83.0 166 0.3461 0.8372
0.0603 84.0 168 0.3337 0.8140
0.0653 85.0 170 0.3330 0.8372
0.0653 86.0 172 0.3451 0.8837
0.0653 87.0 174 0.3612 0.8837
0.0653 88.0 176 0.3822 0.8605
0.0653 89.0 178 0.3875 0.8605
0.0571 90.0 180 0.3845 0.8605
0.0571 91.0 182 0.3642 0.8837
0.0571 92.0 184 0.3529 0.8837
0.0571 93.0 186 0.3471 0.8837
0.0571 94.0 188 0.3540 0.8837
0.069 95.0 190 0.3609 0.8837
0.069 96.0 192 0.3609 0.8837
0.069 97.0 194 0.3634 0.8837
0.069 98.0 196 0.3627 0.8837
0.069 99.0 198 0.3609 0.8837
0.0667 100.0 200 0.3604 0.8837

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1