BilalMuftuoglu's picture
End of training
7f647d9 verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-65-fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8732394366197183

deit-base-distilled-patch16-224-65-fold5

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5156
  • Accuracy: 0.8732

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 0.7425 0.4930
No log 1.8462 6 0.7193 0.5634
No log 2.7692 9 0.6808 0.5915
0.7309 4.0 13 0.6253 0.5915
0.7309 4.9231 16 0.6022 0.6761
0.7309 5.8462 19 0.5589 0.6479
0.6449 6.7692 22 0.5559 0.7183
0.6449 8.0 26 0.4910 0.7183
0.6449 8.9231 29 0.4996 0.7606
0.5494 9.8462 32 0.4903 0.7324
0.5494 10.7692 35 0.7331 0.6620
0.5494 12.0 39 0.5053 0.6901
0.4793 12.9231 42 0.4781 0.7324
0.4793 13.8462 45 0.4997 0.7465
0.4793 14.7692 48 0.5197 0.7465
0.4327 16.0 52 0.5339 0.7606
0.4327 16.9231 55 0.4475 0.7606
0.4327 17.8462 58 0.4808 0.7887
0.3747 18.7692 61 0.4868 0.7465
0.3747 20.0 65 0.6206 0.7042
0.3747 20.9231 68 0.5271 0.7324
0.3474 21.8462 71 0.5227 0.6901
0.3474 22.7692 74 0.5078 0.7465
0.3474 24.0 78 0.5842 0.6901
0.267 24.9231 81 0.6015 0.7183
0.267 25.8462 84 0.6533 0.7606
0.267 26.7692 87 0.5764 0.7324
0.2333 28.0 91 0.4862 0.8028
0.2333 28.9231 94 0.6233 0.7183
0.2333 29.8462 97 0.7549 0.7465
0.2635 30.7692 100 0.4890 0.8028
0.2635 32.0 104 0.5616 0.8028
0.2635 32.9231 107 0.5501 0.7606
0.192 33.8462 110 0.4845 0.8169
0.192 34.7692 113 0.5116 0.7887
0.192 36.0 117 0.5017 0.8169
0.1763 36.9231 120 0.4798 0.7887
0.1763 37.8462 123 0.5328 0.7746
0.1763 38.7692 126 0.6393 0.7606
0.172 40.0 130 0.5481 0.7887
0.172 40.9231 133 0.5867 0.7887
0.172 41.8462 136 0.9223 0.7042
0.172 42.7692 139 0.6262 0.8028
0.1832 44.0 143 0.6091 0.7746
0.1832 44.9231 146 0.5837 0.7606
0.1832 45.8462 149 0.5465 0.7606
0.1641 46.7692 152 0.6745 0.7746
0.1641 48.0 156 0.5398 0.7887
0.1641 48.9231 159 0.5387 0.8169
0.1366 49.8462 162 0.5737 0.8028
0.1366 50.7692 165 0.5255 0.8310
0.1366 52.0 169 0.6486 0.7887
0.149 52.9231 172 0.5404 0.8169
0.149 53.8462 175 0.5655 0.8169
0.149 54.7692 178 0.6121 0.8028
0.1196 56.0 182 0.6182 0.8310
0.1196 56.9231 185 0.6175 0.8028
0.1196 57.8462 188 0.5921 0.8310
0.1202 58.7692 191 0.5953 0.8169
0.1202 60.0 195 0.6065 0.8028
0.1202 60.9231 198 0.5448 0.8310
0.1289 61.8462 201 0.5258 0.8451
0.1289 62.7692 204 0.5440 0.8310
0.1289 64.0 208 0.6082 0.8169
0.1262 64.9231 211 0.6358 0.8169
0.1262 65.8462 214 0.5982 0.8169
0.1262 66.7692 217 0.5850 0.8451
0.124 68.0 221 0.5733 0.8169
0.124 68.9231 224 0.5631 0.8028
0.124 69.8462 227 0.5375 0.8310
0.1208 70.7692 230 0.5158 0.8169
0.1208 72.0 234 0.5431 0.8169
0.1208 72.9231 237 0.5099 0.8451
0.1126 73.8462 240 0.5803 0.7887
0.1126 74.7692 243 0.5416 0.8028
0.1126 76.0 247 0.5835 0.8451
0.1089 76.9231 250 0.5923 0.8310
0.1089 77.8462 253 0.5228 0.8310
0.1089 78.7692 256 0.5467 0.8310
0.0965 80.0 260 0.5156 0.8732
0.0965 80.9231 263 0.5082 0.8451
0.0965 81.8462 266 0.5071 0.8451
0.0965 82.7692 269 0.5070 0.8592
0.0947 84.0 273 0.5268 0.8592
0.0947 84.9231 276 0.5283 0.8592
0.0947 85.8462 279 0.5261 0.8451
0.0751 86.7692 282 0.5286 0.8310
0.0751 88.0 286 0.5415 0.8310
0.0751 88.9231 289 0.5511 0.8310
0.0912 89.8462 292 0.5542 0.8310
0.0912 90.7692 295 0.5464 0.8310
0.0912 92.0 299 0.5410 0.8310
0.104 92.3077 300 0.5407 0.8310

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1