deit-base-distilled-patch16-224-55-fold4

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4908
  • Accuracy: 0.8354

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8571 3 0.8297 0.5063
No log 2.0 7 0.6548 0.6203
0.6826 2.8571 10 0.6513 0.5190
0.6826 4.0 14 0.6024 0.7342
0.6826 4.8571 17 0.6473 0.5823
0.6198 6.0 21 0.5717 0.6835
0.6198 6.8571 24 0.7837 0.5570
0.6198 8.0 28 0.5272 0.7595
0.5409 8.8571 31 0.5162 0.7342
0.5409 10.0 35 0.6156 0.6709
0.5409 10.8571 38 0.5844 0.6582
0.5177 12.0 42 0.7013 0.6709
0.5177 12.8571 45 0.5017 0.7722
0.5177 14.0 49 0.4723 0.7975
0.4995 14.8571 52 0.7057 0.6835
0.4995 16.0 56 0.4669 0.8228
0.4995 16.8571 59 0.5737 0.7468
0.3767 18.0 63 0.5035 0.8101
0.3767 18.8571 66 0.8993 0.6203
0.3602 20.0 70 0.5425 0.7975
0.3602 20.8571 73 0.5605 0.7722
0.3602 22.0 77 0.4260 0.7975
0.3479 22.8571 80 0.4117 0.8228
0.3479 24.0 84 0.4017 0.7975
0.3479 24.8571 87 0.4401 0.8228
0.2845 26.0 91 0.4490 0.7975
0.2845 26.8571 94 0.5080 0.8101
0.2845 28.0 98 0.5014 0.7975
0.2316 28.8571 101 0.5385 0.7722
0.2316 30.0 105 0.5643 0.7595
0.2316 30.8571 108 0.4887 0.7848
0.2212 32.0 112 0.5253 0.7975
0.2212 32.8571 115 0.4633 0.7975
0.2212 34.0 119 0.5079 0.8228
0.2093 34.8571 122 0.5082 0.7975
0.2093 36.0 126 0.6113 0.7468
0.2093 36.8571 129 0.5094 0.7848
0.179 38.0 133 0.6253 0.8101
0.179 38.8571 136 0.5406 0.7848
0.173 40.0 140 0.6687 0.7722
0.173 40.8571 143 0.5691 0.7975
0.173 42.0 147 0.5776 0.7975
0.1881 42.8571 150 0.7816 0.7595
0.1881 44.0 154 0.4908 0.8354
0.1881 44.8571 157 0.5330 0.7848
0.161 46.0 161 0.5351 0.7848
0.161 46.8571 164 0.6663 0.7848
0.161 48.0 168 0.5382 0.7975
0.1446 48.8571 171 0.5877 0.7848
0.1446 50.0 175 0.6856 0.8228
0.1446 50.8571 178 0.6044 0.8101
0.1556 52.0 182 0.7954 0.7848
0.1556 52.8571 185 0.7432 0.7848
0.1556 54.0 189 0.7896 0.8101
0.1602 54.8571 192 0.8400 0.8101
0.1602 56.0 196 0.8243 0.7848
0.1602 56.8571 199 0.6864 0.8354
0.1357 58.0 203 0.7131 0.7722
0.1357 58.8571 206 0.9191 0.7722
0.1262 60.0 210 0.7465 0.7722
0.1262 60.8571 213 0.7127 0.7848
0.1262 62.0 217 0.6973 0.7975
0.1323 62.8571 220 0.7125 0.7848
0.1323 64.0 224 0.7235 0.7848
0.1323 64.8571 227 0.7200 0.7975
0.1258 66.0 231 0.7616 0.7848
0.1258 66.8571 234 0.8537 0.7848
0.1258 68.0 238 0.8223 0.7848
0.1316 68.8571 241 0.7751 0.8228
0.1316 70.0 245 0.7689 0.8228
0.1316 70.8571 248 0.7751 0.8101
0.1104 72.0 252 0.7770 0.8101
0.1104 72.8571 255 0.7916 0.7975
0.1104 74.0 259 0.7995 0.7848
0.1239 74.8571 262 0.7981 0.7848
0.1239 76.0 266 0.7890 0.8228
0.1239 76.8571 269 0.7888 0.8228
0.1057 78.0 273 0.7957 0.8228
0.1057 78.8571 276 0.7979 0.8228
0.1015 80.0 280 0.7959 0.8101
0.1015 80.8571 283 0.7935 0.8101
0.1015 82.0 287 0.7973 0.8228
0.101 82.8571 290 0.8033 0.7975
0.101 84.0 294 0.8072 0.7975
0.101 84.8571 297 0.8049 0.7975
0.1116 85.7143 300 0.8042 0.8101

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
34
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BilalMuftuoglu/deit-base-distilled-patch16-224-55-fold4

Finetuned
(73)
this model

Evaluation results