BilalMuftuoglu's picture
End of training
cc22fba verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-55-fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8354430379746836

deit-base-distilled-patch16-224-55-fold1

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4563
  • Accuracy: 0.8354

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8571 3 0.7880 0.4304
No log 2.0 7 0.8337 0.5443
0.776 2.8571 10 0.7047 0.5443
0.776 4.0 14 0.6729 0.6582
0.776 4.8571 17 0.6784 0.5696
0.6852 6.0 21 0.6251 0.6329
0.6852 6.8571 24 0.6246 0.6329
0.6852 8.0 28 0.5865 0.6835
0.6223 8.8571 31 0.5573 0.6582
0.6223 10.0 35 0.5841 0.6582
0.6223 10.8571 38 0.5791 0.7089
0.5573 12.0 42 0.5283 0.7215
0.5573 12.8571 45 0.5126 0.7595
0.5573 14.0 49 0.5643 0.7089
0.4772 14.8571 52 0.6736 0.6582
0.4772 16.0 56 0.5707 0.7595
0.4772 16.8571 59 0.5199 0.7215
0.4656 18.0 63 0.5285 0.7595
0.4656 18.8571 66 0.4535 0.7848
0.4147 20.0 70 0.4557 0.7975
0.4147 20.8571 73 0.4483 0.7975
0.4147 22.0 77 0.5025 0.7342
0.342 22.8571 80 0.4716 0.7215
0.342 24.0 84 0.5311 0.7342
0.342 24.8571 87 0.4560 0.7848
0.2993 26.0 91 0.5119 0.7848
0.2993 26.8571 94 0.5321 0.7722
0.2993 28.0 98 0.4937 0.7975
0.2506 28.8571 101 0.4563 0.8354
0.2506 30.0 105 0.5234 0.7975
0.2506 30.8571 108 0.5359 0.7848
0.2201 32.0 112 0.5145 0.7975
0.2201 32.8571 115 0.5343 0.8101
0.2201 34.0 119 0.4689 0.7975
0.2098 34.8571 122 0.6465 0.8101
0.2098 36.0 126 0.5003 0.7848
0.2098 36.8571 129 0.6113 0.7468
0.1808 38.0 133 0.8216 0.7595
0.1808 38.8571 136 0.5603 0.7975
0.1892 40.0 140 0.6136 0.7848
0.1892 40.8571 143 0.6074 0.7722
0.1892 42.0 147 0.6503 0.7848
0.154 42.8571 150 0.7923 0.7595
0.154 44.0 154 0.7791 0.7722
0.154 44.8571 157 0.7948 0.7722
0.1613 46.0 161 0.7270 0.7722
0.1613 46.8571 164 0.7283 0.7848
0.1613 48.0 168 0.7057 0.7975
0.141 48.8571 171 0.6692 0.7848
0.141 50.0 175 0.6390 0.7975
0.141 50.8571 178 0.6543 0.7975
0.1434 52.0 182 0.7736 0.7468
0.1434 52.8571 185 0.6426 0.7722
0.1434 54.0 189 0.6891 0.7848
0.1583 54.8571 192 0.7521 0.7848
0.1583 56.0 196 0.6495 0.8101
0.1583 56.8571 199 0.7049 0.7975
0.1418 58.0 203 0.7534 0.7848
0.1418 58.8571 206 0.6892 0.7975
0.1488 60.0 210 0.7528 0.7722
0.1488 60.8571 213 0.6920 0.7975
0.1488 62.0 217 0.6767 0.7722
0.1481 62.8571 220 0.7510 0.7848
0.1481 64.0 224 0.6075 0.7848
0.1481 64.8571 227 0.5858 0.7975
0.1014 66.0 231 0.6668 0.7848
0.1014 66.8571 234 0.6127 0.7975
0.1014 68.0 238 0.6295 0.7975
0.1147 68.8571 241 0.6723 0.8101
0.1147 70.0 245 0.7167 0.7848
0.1147 70.8571 248 0.6914 0.7975
0.1289 72.0 252 0.6676 0.7975
0.1289 72.8571 255 0.6874 0.8101
0.1289 74.0 259 0.7486 0.8101
0.1084 74.8571 262 0.7193 0.8101
0.1084 76.0 266 0.7054 0.8354
0.1084 76.8571 269 0.7052 0.8228
0.11 78.0 273 0.6885 0.7975
0.11 78.8571 276 0.7163 0.8101
0.1144 80.0 280 0.6902 0.7975
0.1144 80.8571 283 0.6886 0.7975
0.1144 82.0 287 0.7062 0.8228
0.1026 82.8571 290 0.7196 0.8101
0.1026 84.0 294 0.7332 0.7975
0.1026 84.8571 297 0.7225 0.7975
0.1143 85.7143 300 0.7162 0.7975

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1