metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-55-fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8354430379746836
deit-base-distilled-patch16-224-55-fold1
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4563
- Accuracy: 0.8354
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.8571 | 3 | 0.7880 | 0.4304 |
No log | 2.0 | 7 | 0.8337 | 0.5443 |
0.776 | 2.8571 | 10 | 0.7047 | 0.5443 |
0.776 | 4.0 | 14 | 0.6729 | 0.6582 |
0.776 | 4.8571 | 17 | 0.6784 | 0.5696 |
0.6852 | 6.0 | 21 | 0.6251 | 0.6329 |
0.6852 | 6.8571 | 24 | 0.6246 | 0.6329 |
0.6852 | 8.0 | 28 | 0.5865 | 0.6835 |
0.6223 | 8.8571 | 31 | 0.5573 | 0.6582 |
0.6223 | 10.0 | 35 | 0.5841 | 0.6582 |
0.6223 | 10.8571 | 38 | 0.5791 | 0.7089 |
0.5573 | 12.0 | 42 | 0.5283 | 0.7215 |
0.5573 | 12.8571 | 45 | 0.5126 | 0.7595 |
0.5573 | 14.0 | 49 | 0.5643 | 0.7089 |
0.4772 | 14.8571 | 52 | 0.6736 | 0.6582 |
0.4772 | 16.0 | 56 | 0.5707 | 0.7595 |
0.4772 | 16.8571 | 59 | 0.5199 | 0.7215 |
0.4656 | 18.0 | 63 | 0.5285 | 0.7595 |
0.4656 | 18.8571 | 66 | 0.4535 | 0.7848 |
0.4147 | 20.0 | 70 | 0.4557 | 0.7975 |
0.4147 | 20.8571 | 73 | 0.4483 | 0.7975 |
0.4147 | 22.0 | 77 | 0.5025 | 0.7342 |
0.342 | 22.8571 | 80 | 0.4716 | 0.7215 |
0.342 | 24.0 | 84 | 0.5311 | 0.7342 |
0.342 | 24.8571 | 87 | 0.4560 | 0.7848 |
0.2993 | 26.0 | 91 | 0.5119 | 0.7848 |
0.2993 | 26.8571 | 94 | 0.5321 | 0.7722 |
0.2993 | 28.0 | 98 | 0.4937 | 0.7975 |
0.2506 | 28.8571 | 101 | 0.4563 | 0.8354 |
0.2506 | 30.0 | 105 | 0.5234 | 0.7975 |
0.2506 | 30.8571 | 108 | 0.5359 | 0.7848 |
0.2201 | 32.0 | 112 | 0.5145 | 0.7975 |
0.2201 | 32.8571 | 115 | 0.5343 | 0.8101 |
0.2201 | 34.0 | 119 | 0.4689 | 0.7975 |
0.2098 | 34.8571 | 122 | 0.6465 | 0.8101 |
0.2098 | 36.0 | 126 | 0.5003 | 0.7848 |
0.2098 | 36.8571 | 129 | 0.6113 | 0.7468 |
0.1808 | 38.0 | 133 | 0.8216 | 0.7595 |
0.1808 | 38.8571 | 136 | 0.5603 | 0.7975 |
0.1892 | 40.0 | 140 | 0.6136 | 0.7848 |
0.1892 | 40.8571 | 143 | 0.6074 | 0.7722 |
0.1892 | 42.0 | 147 | 0.6503 | 0.7848 |
0.154 | 42.8571 | 150 | 0.7923 | 0.7595 |
0.154 | 44.0 | 154 | 0.7791 | 0.7722 |
0.154 | 44.8571 | 157 | 0.7948 | 0.7722 |
0.1613 | 46.0 | 161 | 0.7270 | 0.7722 |
0.1613 | 46.8571 | 164 | 0.7283 | 0.7848 |
0.1613 | 48.0 | 168 | 0.7057 | 0.7975 |
0.141 | 48.8571 | 171 | 0.6692 | 0.7848 |
0.141 | 50.0 | 175 | 0.6390 | 0.7975 |
0.141 | 50.8571 | 178 | 0.6543 | 0.7975 |
0.1434 | 52.0 | 182 | 0.7736 | 0.7468 |
0.1434 | 52.8571 | 185 | 0.6426 | 0.7722 |
0.1434 | 54.0 | 189 | 0.6891 | 0.7848 |
0.1583 | 54.8571 | 192 | 0.7521 | 0.7848 |
0.1583 | 56.0 | 196 | 0.6495 | 0.8101 |
0.1583 | 56.8571 | 199 | 0.7049 | 0.7975 |
0.1418 | 58.0 | 203 | 0.7534 | 0.7848 |
0.1418 | 58.8571 | 206 | 0.6892 | 0.7975 |
0.1488 | 60.0 | 210 | 0.7528 | 0.7722 |
0.1488 | 60.8571 | 213 | 0.6920 | 0.7975 |
0.1488 | 62.0 | 217 | 0.6767 | 0.7722 |
0.1481 | 62.8571 | 220 | 0.7510 | 0.7848 |
0.1481 | 64.0 | 224 | 0.6075 | 0.7848 |
0.1481 | 64.8571 | 227 | 0.5858 | 0.7975 |
0.1014 | 66.0 | 231 | 0.6668 | 0.7848 |
0.1014 | 66.8571 | 234 | 0.6127 | 0.7975 |
0.1014 | 68.0 | 238 | 0.6295 | 0.7975 |
0.1147 | 68.8571 | 241 | 0.6723 | 0.8101 |
0.1147 | 70.0 | 245 | 0.7167 | 0.7848 |
0.1147 | 70.8571 | 248 | 0.6914 | 0.7975 |
0.1289 | 72.0 | 252 | 0.6676 | 0.7975 |
0.1289 | 72.8571 | 255 | 0.6874 | 0.8101 |
0.1289 | 74.0 | 259 | 0.7486 | 0.8101 |
0.1084 | 74.8571 | 262 | 0.7193 | 0.8101 |
0.1084 | 76.0 | 266 | 0.7054 | 0.8354 |
0.1084 | 76.8571 | 269 | 0.7052 | 0.8228 |
0.11 | 78.0 | 273 | 0.6885 | 0.7975 |
0.11 | 78.8571 | 276 | 0.7163 | 0.8101 |
0.1144 | 80.0 | 280 | 0.6902 | 0.7975 |
0.1144 | 80.8571 | 283 | 0.6886 | 0.7975 |
0.1144 | 82.0 | 287 | 0.7062 | 0.8228 |
0.1026 | 82.8571 | 290 | 0.7196 | 0.8101 |
0.1026 | 84.0 | 294 | 0.7332 | 0.7975 |
0.1026 | 84.8571 | 297 | 0.7225 | 0.7975 |
0.1143 | 85.7143 | 300 | 0.7162 | 0.7975 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1