BilalMuftuoglu's picture
End of training
4287a88 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-hasta-75-fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9166666666666666

beit-base-patch16-224-hasta-75-fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5330
  • Accuracy: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.2661 0.1667
No log 2.0 2 0.9215 0.5
No log 3.0 3 0.5330 0.9167
No log 4.0 4 0.4361 0.9167
No log 5.0 5 0.4724 0.9167
No log 6.0 6 0.4424 0.9167
No log 7.0 7 0.3788 0.9167
No log 8.0 8 0.4228 0.9167
No log 9.0 9 0.4592 0.9167
0.3974 10.0 10 0.3966 0.9167
0.3974 11.0 11 0.3517 0.9167
0.3974 12.0 12 0.3481 0.9167
0.3974 13.0 13 0.3315 0.9167
0.3974 14.0 14 0.3353 0.9167
0.3974 15.0 15 0.3784 0.9167
0.3974 16.0 16 0.4232 0.9167
0.3974 17.0 17 0.4654 0.9167
0.3974 18.0 18 0.4091 0.9167
0.3974 19.0 19 0.4149 0.9167
0.1925 20.0 20 0.4202 0.9167
0.1925 21.0 21 0.4502 0.9167
0.1925 22.0 22 0.4371 0.9167
0.1925 23.0 23 0.4291 0.9167
0.1925 24.0 24 0.4265 0.8333
0.1925 25.0 25 0.4414 0.8333
0.1925 26.0 26 0.3957 0.8333
0.1925 27.0 27 0.3567 0.9167
0.1925 28.0 28 0.3406 0.9167
0.1925 29.0 29 0.3101 0.9167
0.1407 30.0 30 0.2956 0.9167
0.1407 31.0 31 0.3548 0.9167
0.1407 32.0 32 0.3067 0.9167
0.1407 33.0 33 0.2485 0.9167
0.1407 34.0 34 0.2818 0.9167
0.1407 35.0 35 0.3197 0.9167
0.1407 36.0 36 0.3401 0.9167
0.1407 37.0 37 0.3282 0.9167
0.1407 38.0 38 0.3078 0.9167
0.1407 39.0 39 0.2906 0.9167
0.1204 40.0 40 0.2875 0.9167
0.1204 41.0 41 0.3188 0.9167
0.1204 42.0 42 0.3449 0.9167
0.1204 43.0 43 0.3520 0.9167
0.1204 44.0 44 0.3401 0.9167
0.1204 45.0 45 0.3029 0.9167
0.1204 46.0 46 0.2584 0.9167
0.1204 47.0 47 0.2358 0.9167
0.1204 48.0 48 0.2265 0.9167
0.1204 49.0 49 0.2144 0.9167
0.0691 50.0 50 0.1622 0.9167
0.0691 51.0 51 0.1094 0.9167
0.0691 52.0 52 0.1955 0.9167
0.0691 53.0 53 0.3863 0.9167
0.0691 54.0 54 0.4803 0.9167
0.0691 55.0 55 0.5175 0.9167
0.0691 56.0 56 0.4899 0.9167
0.0691 57.0 57 0.4092 0.9167
0.0691 58.0 58 0.3755 0.9167
0.0691 59.0 59 0.3642 0.9167
0.062 60.0 60 0.4002 0.9167
0.062 61.0 61 0.4086 0.9167
0.062 62.0 62 0.4066 0.9167
0.062 63.0 63 0.3781 0.9167
0.062 64.0 64 0.3259 0.9167
0.062 65.0 65 0.2518 0.9167
0.062 66.0 66 0.2186 0.9167
0.062 67.0 67 0.2601 0.9167
0.062 68.0 68 0.2965 0.9167
0.062 69.0 69 0.3699 0.9167
0.0313 70.0 70 0.4417 0.9167
0.0313 71.0 71 0.5105 0.9167
0.0313 72.0 72 0.5439 0.9167
0.0313 73.0 73 0.5557 0.9167
0.0313 74.0 74 0.5514 0.9167
0.0313 75.0 75 0.5486 0.9167
0.0313 76.0 76 0.5317 0.9167
0.0313 77.0 77 0.4996 0.9167
0.0313 78.0 78 0.4638 0.9167
0.0313 79.0 79 0.4196 0.9167
0.0359 80.0 80 0.3639 0.9167
0.0359 81.0 81 0.3530 0.9167
0.0359 82.0 82 0.3918 0.9167
0.0359 83.0 83 0.4290 0.9167
0.0359 84.0 84 0.4569 0.9167
0.0359 85.0 85 0.4849 0.9167
0.0359 86.0 86 0.5136 0.9167
0.0359 87.0 87 0.5406 0.9167
0.0359 88.0 88 0.5586 0.9167
0.0359 89.0 89 0.5745 0.9167
0.0338 90.0 90 0.5878 0.9167
0.0338 91.0 91 0.5981 0.9167
0.0338 92.0 92 0.6071 0.9167
0.0338 93.0 93 0.6133 0.9167
0.0338 94.0 94 0.6139 0.9167
0.0338 95.0 95 0.6106 0.9167
0.0338 96.0 96 0.6059 0.9167
0.0338 97.0 97 0.6019 0.9167
0.0338 98.0 98 0.5981 0.9167
0.0338 99.0 99 0.5942 0.9167
0.0302 100.0 100 0.5923 0.9167

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1