beit-base-patch16-224-hasta-75-fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2432
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 2.2077 0.0
No log 2.0 2 1.7828 0.0
No log 3.0 3 1.0543 0.3333
No log 4.0 4 0.4305 0.9167
No log 5.0 5 0.2672 0.9167
No log 6.0 6 0.3206 0.9167
No log 7.0 7 0.3318 0.9167
No log 8.0 8 0.3007 0.9167
No log 9.0 9 0.3268 0.9167
0.4863 10.0 10 0.3425 0.9167
0.4863 11.0 11 0.2906 0.9167
0.4863 12.0 12 0.2639 0.9167
0.4863 13.0 13 0.2962 0.9167
0.4863 14.0 14 0.4442 0.8333
0.4863 15.0 15 0.3108 0.8333
0.4863 16.0 16 0.2321 0.9167
0.4863 17.0 17 0.2309 0.9167
0.4863 18.0 18 0.2432 1.0
0.4863 19.0 19 0.2240 1.0
0.1603 20.0 20 0.1608 0.9167
0.1603 21.0 21 0.1275 0.9167
0.1603 22.0 22 0.1191 0.9167
0.1603 23.0 23 0.1030 0.9167
0.1603 24.0 24 0.1010 1.0
0.1603 25.0 25 0.0816 1.0
0.1603 26.0 26 0.1814 0.9167
0.1603 27.0 27 0.1654 0.9167
0.1603 28.0 28 0.0945 1.0
0.1603 29.0 29 0.0847 1.0
0.1007 30.0 30 0.1566 1.0
0.1007 31.0 31 0.0819 1.0
0.1007 32.0 32 0.0782 1.0
0.1007 33.0 33 0.0781 1.0
0.1007 34.0 34 0.0635 1.0
0.1007 35.0 35 0.0675 1.0
0.1007 36.0 36 0.1137 1.0
0.1007 37.0 37 0.1267 0.9167
0.1007 38.0 38 0.1438 0.9167
0.1007 39.0 39 0.1301 0.9167
0.0573 40.0 40 0.1123 0.9167
0.0573 41.0 41 0.0673 1.0
0.0573 42.0 42 0.0265 1.0
0.0573 43.0 43 0.0317 1.0
0.0573 44.0 44 0.0461 1.0
0.0573 45.0 45 0.0326 1.0
0.0573 46.0 46 0.0221 1.0
0.0573 47.0 47 0.0227 1.0
0.0573 48.0 48 0.0214 1.0
0.0573 49.0 49 0.0176 1.0
0.0566 50.0 50 0.0150 1.0
0.0566 51.0 51 0.0154 1.0
0.0566 52.0 52 0.0139 1.0
0.0566 53.0 53 0.0097 1.0
0.0566 54.0 54 0.0143 1.0
0.0566 55.0 55 0.0272 1.0
0.0566 56.0 56 0.0427 1.0
0.0566 57.0 57 0.0343 1.0
0.0566 58.0 58 0.0290 1.0
0.0566 59.0 59 0.0557 1.0
0.0242 60.0 60 0.0905 1.0
0.0242 61.0 61 0.1374 0.9167
0.0242 62.0 62 0.1763 0.9167
0.0242 63.0 63 0.1793 0.9167
0.0242 64.0 64 0.1640 0.9167
0.0242 65.0 65 0.1445 0.9167
0.0242 66.0 66 0.1092 1.0
0.0242 67.0 67 0.0915 1.0
0.0242 68.0 68 0.0640 1.0
0.0242 69.0 69 0.0376 1.0
0.0339 70.0 70 0.0297 1.0
0.0339 71.0 71 0.0238 1.0
0.0339 72.0 72 0.0178 1.0
0.0339 73.0 73 0.0104 1.0
0.0339 74.0 74 0.0063 1.0
0.0339 75.0 75 0.0042 1.0
0.0339 76.0 76 0.0031 1.0
0.0339 77.0 77 0.0029 1.0
0.0339 78.0 78 0.0034 1.0
0.0339 79.0 79 0.0035 1.0
0.0532 80.0 80 0.0035 1.0
0.0532 81.0 81 0.0039 1.0
0.0532 82.0 82 0.0054 1.0
0.0532 83.0 83 0.0110 1.0
0.0532 84.0 84 0.0255 1.0
0.0532 85.0 85 0.0500 1.0
0.0532 86.0 86 0.0844 0.9167
0.0532 87.0 87 0.1191 0.9167
0.0532 88.0 88 0.1437 0.9167
0.0532 89.0 89 0.1564 0.9167
0.0316 90.0 90 0.1544 0.9167
0.0316 91.0 91 0.1455 0.9167
0.0316 92.0 92 0.1383 0.9167
0.0316 93.0 93 0.1194 0.9167
0.0316 94.0 94 0.1027 0.9167
0.0316 95.0 95 0.0875 0.9167
0.0316 96.0 96 0.0715 1.0
0.0316 97.0 97 0.0608 1.0
0.0316 98.0 98 0.0519 1.0
0.0316 99.0 99 0.0468 1.0
0.0299 100.0 100 0.0442 1.0

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BilalMuftuoglu/beit-base-patch16-224-hasta-75-fold1

Finetuned
(297)
this model

Evaluation results