beit-base-patch16-224-fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6919
  • Accuracy: 0.8228

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8571 3 0.6964 0.4937
No log 2.0 7 0.6336 0.6456
0.7161 2.8571 10 0.6712 0.5063
0.7161 4.0 14 0.5884 0.6835
0.7161 4.8571 17 0.6325 0.5570
0.6466 6.0 21 0.6307 0.6076
0.6466 6.8571 24 0.5518 0.6835
0.6466 8.0 28 0.6856 0.6456
0.5604 8.8571 31 0.5678 0.7089
0.5604 10.0 35 0.5764 0.6329
0.5604 10.8571 38 0.6124 0.6456
0.4941 12.0 42 1.1315 0.5316
0.4941 12.8571 45 0.5624 0.6835
0.4941 14.0 49 0.6351 0.6962
0.4516 14.8571 52 0.6811 0.6835
0.4516 16.0 56 0.7385 0.6456
0.4516 16.8571 59 0.6123 0.7215
0.409 18.0 63 0.5877 0.6835
0.409 18.8571 66 0.6250 0.6962
0.3439 20.0 70 0.6220 0.7342
0.3439 20.8571 73 0.7250 0.7089
0.3439 22.0 77 0.6107 0.7342
0.3268 22.8571 80 0.4999 0.7975
0.3268 24.0 84 0.5325 0.7468
0.3268 24.8571 87 0.7209 0.7342
0.2941 26.0 91 0.5557 0.7722
0.2941 26.8571 94 0.6655 0.7595
0.2941 28.0 98 1.0775 0.6962
0.284 28.8571 101 0.6817 0.7595
0.284 30.0 105 0.9235 0.6835
0.284 30.8571 108 0.6587 0.7595
0.3134 32.0 112 0.7086 0.7468
0.3134 32.8571 115 0.6895 0.7468
0.3134 34.0 119 0.6418 0.7722
0.2266 34.8571 122 0.7007 0.7848
0.2266 36.0 126 0.6919 0.8228
0.2266 36.8571 129 0.7562 0.7342
0.2249 38.0 133 0.6775 0.7722
0.2249 38.8571 136 0.7787 0.7595
0.2181 40.0 140 0.7932 0.7722
0.2181 40.8571 143 0.9334 0.7595
0.2181 42.0 147 0.8224 0.7468
0.186 42.8571 150 0.8444 0.7722
0.186 44.0 154 1.0350 0.7722
0.186 44.8571 157 0.8386 0.7722
0.1882 46.0 161 0.8384 0.7722
0.1882 46.8571 164 0.7905 0.7595
0.1882 48.0 168 0.7184 0.7722
0.1649 48.8571 171 0.8119 0.7595
0.1649 50.0 175 0.7172 0.7722
0.1649 50.8571 178 0.9249 0.7722
0.1847 52.0 182 0.8069 0.7722
0.1847 52.8571 185 0.8753 0.7722
0.1847 54.0 189 0.8822 0.7722
0.1606 54.8571 192 0.7481 0.7975
0.1606 56.0 196 0.7300 0.7722
0.1606 56.8571 199 0.7325 0.8101
0.142 58.0 203 0.7088 0.8228
0.142 58.8571 206 0.6900 0.8228
0.1546 60.0 210 0.8303 0.7722
0.1546 60.8571 213 0.8218 0.7975
0.1546 62.0 217 0.9628 0.7848
0.1608 62.8571 220 0.9826 0.7848
0.1608 64.0 224 0.7604 0.7595
0.1608 64.8571 227 0.8165 0.7722
0.1418 66.0 231 0.8280 0.7722
0.1418 66.8571 234 0.9254 0.7848
0.1418 68.0 238 0.8439 0.7848
0.1505 68.8571 241 0.8096 0.7975
0.1505 70.0 245 0.9471 0.7595
0.1505 70.8571 248 0.9028 0.7595
0.1211 72.0 252 0.7744 0.7975
0.1211 72.8571 255 0.7756 0.8101
0.1211 74.0 259 0.7904 0.8101
0.1248 74.8571 262 0.8036 0.8101
0.1248 76.0 266 0.8592 0.7848
0.1248 76.8571 269 0.8946 0.7848
0.122 78.0 273 0.8576 0.7848
0.122 78.8571 276 0.9037 0.7975
0.1129 80.0 280 0.9982 0.7848
0.1129 80.8571 283 1.0404 0.7722
0.1129 82.0 287 0.9969 0.7975
0.1136 82.8571 290 0.9586 0.7975
0.1136 84.0 294 0.9200 0.7848
0.1136 84.8571 297 0.9063 0.7722
0.1233 85.7143 300 0.9050 0.7722

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
68
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BilalMuftuoglu/beit-base-patch16-224-55-fold5

Finetuned
(292)
this model

Evaluation results