distilbart-12-6-cnn-dm-abstractive-summarizer

This model is a fine-tuned version of sshleifer/distilbart-cnn-12-6 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6988
  • Rouge1: 0.42
  • Rouge2: 0.2006
  • Rougel: 0.3032
  • Rougelsum: 0.3033
  • Generated Length: 72.6006

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Generated Length
1.1498 1.0 1436 1.5556 0.4009 0.1815 0.2843 0.2843 72.1027
1.1051 2.0 2872 1.5456 0.4127 0.191 0.2941 0.2942 71.2483
0.892 3.0 4308 1.5954 0.4129 0.1924 0.2946 0.2947 72.453
0.7543 4.0 5744 1.6574 0.4177 0.1974 0.3018 0.3017 71.8179
0.651 5.0 7180 1.6988 0.42 0.2006 0.3032 0.3033 72.6006

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
306M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BeenaSamuel/distilbart-12-6-cnn-dm-abstractive-summarizer

Finetuned
(29)
this model