llama-3b-yelp-5
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1560
- Accuracy: 0.5031
- Precision: 0.4995
- Recall: 0.5007
- F1: 0.4992
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0.2559 | 100 | 1.5388 | 0.3881 | 0.3781 | 0.3857 | 0.3795 |
No log | 0.5118 | 200 | 1.3305 | 0.4521 | 0.4572 | 0.4485 | 0.4488 |
No log | 0.7678 | 300 | 1.2792 | 0.4671 | 0.4605 | 0.4669 | 0.4569 |
No log | 1.0230 | 400 | 1.2323 | 0.4813 | 0.4753 | 0.4787 | 0.4749 |
5.6322 | 1.2790 | 500 | 1.2116 | 0.4912 | 0.4880 | 0.4897 | 0.4872 |
5.6322 | 1.5349 | 600 | 1.1980 | 0.4917 | 0.4883 | 0.4895 | 0.4876 |
5.6322 | 1.7908 | 700 | 1.1828 | 0.4979 | 0.4965 | 0.4953 | 0.4940 |
5.6322 | 2.0461 | 800 | 1.1738 | 0.498 | 0.4924 | 0.4963 | 0.4930 |
5.6322 | 2.3020 | 900 | 1.1682 | 0.4994 | 0.4991 | 0.4987 | 0.4980 |
4.4778 | 2.5579 | 1000 | 1.1581 | 0.5033 | 0.4979 | 0.5017 | 0.4993 |
4.4778 | 2.8138 | 1100 | 1.1560 | 0.5031 | 0.4995 | 0.5007 | 0.4992 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Model tree for BayanDuygu/llama-3b-yelp-5
Base model
meta-llama/Llama-3.2-3B-Instruct