llama-3b-sst-2
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2716
- Accuracy: 0.8865
- F1: 0.8899
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.1900 | 100 | 0.4869 | 0.7718 | 0.7863 |
No log | 0.3800 | 200 | 0.3686 | 0.8498 | 0.8479 |
No log | 0.5701 | 300 | 0.3440 | 0.8624 | 0.8684 |
No log | 0.7601 | 400 | 0.3106 | 0.8761 | 0.8797 |
1.6451 | 0.9501 | 500 | 0.3123 | 0.8739 | 0.8817 |
1.6451 | 1.1387 | 600 | 0.2887 | 0.8842 | 0.8889 |
1.6451 | 1.3287 | 700 | 0.2839 | 0.8911 | 0.8912 |
1.6451 | 1.5188 | 800 | 0.2787 | 0.8911 | 0.8931 |
1.6451 | 1.7088 | 900 | 0.2973 | 0.875 | 0.8829 |
1.0595 | 1.8988 | 1000 | 0.2712 | 0.8865 | 0.8884 |
1.0595 | 2.0874 | 1100 | 0.2727 | 0.8968 | 0.8968 |
1.0595 | 2.2774 | 1200 | 0.2701 | 0.8899 | 0.8919 |
1.0595 | 2.4675 | 1300 | 0.2692 | 0.8968 | 0.8977 |
1.0595 | 2.6575 | 1400 | 0.2682 | 0.8922 | 0.8944 |
0.9838 | 2.8475 | 1500 | 0.2716 | 0.8865 | 0.8899 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Model tree for BayanDuygu/llama-3b-sst-2
Base model
meta-llama/Llama-3.2-3B-Instruct