Whisper tiny AR - BH

This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0155
  • Wer: 0.1082
  • Cer: 0.0393

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0148 1.0 219 0.0134 0.1157 0.0395
0.0101 2.0 438 0.0105 0.1175 0.0406
0.0076 3.0 657 0.0099 0.1086 0.0379
0.0071 4.0 876 0.0100 0.1066 0.0370
0.0046 5.0 1095 0.0104 0.1081 0.0366
0.0026 6.0 1314 0.0108 0.1137 0.0421
0.003 7.0 1533 0.0116 0.1086 0.0391
0.0026 8.0 1752 0.0123 0.1090 0.0392
0.001 9.0 1971 0.0128 0.1081 0.0377
0.0012 10.0 2190 0.0133 0.1097 0.0391
0.001 11.0 2409 0.0137 0.1091 0.0373
0.0004 12.0 2628 0.0141 0.1081 0.0379
0.0009 13.0 2847 0.0143 0.1064 0.0363
0.0005 14.0 3066 0.0157 0.1086 0.0397
0.0009 15.0 3285 0.0145 0.1071 0.0370

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
187
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Baselhany/Graduation_Project_Whisper_tiny

Finetuned
(1271)
this model