Whisper tiny AR - BH
This model is a fine-tuned version of openai/whisper-tiny on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:
- Loss: 0.0155
- Wer: 0.1082
- Cer: 0.0393
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.0148 | 1.0 | 219 | 0.0134 | 0.1157 | 0.0395 |
0.0101 | 2.0 | 438 | 0.0105 | 0.1175 | 0.0406 |
0.0076 | 3.0 | 657 | 0.0099 | 0.1086 | 0.0379 |
0.0071 | 4.0 | 876 | 0.0100 | 0.1066 | 0.0370 |
0.0046 | 5.0 | 1095 | 0.0104 | 0.1081 | 0.0366 |
0.0026 | 6.0 | 1314 | 0.0108 | 0.1137 | 0.0421 |
0.003 | 7.0 | 1533 | 0.0116 | 0.1086 | 0.0391 |
0.0026 | 8.0 | 1752 | 0.0123 | 0.1090 | 0.0392 |
0.001 | 9.0 | 1971 | 0.0128 | 0.1081 | 0.0377 |
0.0012 | 10.0 | 2190 | 0.0133 | 0.1097 | 0.0391 |
0.001 | 11.0 | 2409 | 0.0137 | 0.1091 | 0.0373 |
0.0004 | 12.0 | 2628 | 0.0141 | 0.1081 | 0.0379 |
0.0009 | 13.0 | 2847 | 0.0143 | 0.1064 | 0.0363 |
0.0005 | 14.0 | 3066 | 0.0157 | 0.1086 | 0.0397 |
0.0009 | 15.0 | 3285 | 0.0145 | 0.1071 | 0.0370 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 187
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Baselhany/Graduation_Project_Whisper_tiny
Base model
openai/whisper-tiny