BTX24's picture
Model save
8f3d2dd verified
metadata
base_model: google/vit-base-patch16-224-in21k
library_name: peft
license: apache-2.0
metrics:
  - accuracy
  - f1
  - precision
  - recall
tags:
  - generated_from_trainer
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-tekno23
    results: []

vit-base-patch16-224-in21k-finetuned-tekno23

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2583
  • Accuracy: 0.4014
  • F1: 0.3092
  • Precision: 0.3870
  • Recall: 0.4014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.3662 1.0 421 1.3619 0.3190 0.1618 0.2852 0.3190
1.3095 2.0 842 1.2970 0.3962 0.2933 0.4359 0.3962
1.2683 3.0 1263 1.2687 0.4020 0.3081 0.3550 0.4020
1.2524 4.0 1684 1.2576 0.4057 0.3098 0.3951 0.4057
1.2781 5.0 2105 1.2583 0.4014 0.3092 0.3870 0.4014

Framework versions

  • PEFT 0.12.1.dev0
  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1