BALAKA's picture
update model card README.md
5078890
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - common_voice
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-53-thai
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice
          type: common_voice
          config: th
          split: validation
          args: th
        metrics:
          - name: Wer
            type: wer
            value: 0.7430683918669131

wav2vec2-large-xlsr-53-thai

This model is a fine-tuned version of airesearch/wav2vec2-large-xlsr-53-th on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3576
  • Wer: 0.7431

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.7312 3.33 100 3.3592 1.0
3.3687 6.67 200 3.2175 1.0
2.4527 10.0 300 2.2648 0.7911
1.0505 13.33 400 2.2322 0.7659
0.7725 16.67 500 2.2775 0.7505
0.6289 20.0 600 2.3209 0.7498
0.543 23.33 700 2.4494 0.7572
0.4991 26.67 800 2.5798 0.7597
0.4492 30.0 900 2.5685 0.7461
0.3737 33.33 1000 2.6186 0.7486
0.3358 36.67 1100 2.7781 0.7480
0.3247 40.0 1200 2.8999 0.7535
0.2963 43.33 1300 2.8668 0.7388
0.2825 46.67 1400 2.8983 0.7449
0.2651 50.0 1500 2.9699 0.7461
0.2597 53.33 1600 2.9930 0.7314
0.2629 56.67 1700 2.9852 0.7406
0.2406 60.0 1800 3.0552 0.7474
0.2293 63.33 1900 3.1058 0.7344
0.2193 66.67 2000 3.1594 0.7406
0.2174 70.0 2100 3.2351 0.7369
0.2127 73.33 2200 3.2696 0.7388
0.2061 76.67 2300 3.2954 0.7566
0.1947 80.0 2400 3.2878 0.7529
0.199 83.33 2500 3.3233 0.7486
0.1961 86.67 2600 3.3136 0.7437
0.1928 90.0 2700 3.3240 0.7406
0.1875 93.33 2800 3.3479 0.7425
0.1852 96.67 2900 3.3681 0.7425
0.1814 100.0 3000 3.3576 0.7431

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 1.16.1
  • Tokenizers 0.13.3