BAAI
/

AquilaChat2-7B / README.md
ZacLiu's picture
Update README.md
9905960 verified
---
license: other
---
![Aquila_logo](./log.jpeg)
<h4 align="center">
<p>
<b>English</b> |
<a href="https://huggingface.co/BAAI/AquilaChat2-7B/blob/main/README_zh.md">简体中文</a>
</p>
</h4>
We opensource our **Aquila2** series, now including **Aquila2**, the base language models, namely **Aquila2-7B** and **Aquila2-34B**, as well as **AquilaChat2**, the chat models, namely **AquilaChat2-7B** and **AquilaChat2-34B**, as well as the long-text chat models, namely **AquilaChat2-7B-16k** and **AquilaChat2-34B-16k**
The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels.
## Quick Start AquilaChat2-7B(Chat model)
### 1. Inference
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import BitsAndBytesConfig
device = torch.device("cuda:0")
model_info = "BAAI/AquilaChat2-7B"
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True, torch_dtype=torch.float16,
# quantization_config=quantization_config, # Uncomment this line for 4bit quantization
)
model.eval()
model.to(device)
text = "请给出10个要到北京旅游的理由。"
from predict import predict
out = predict(model, text, tokenizer=tokenizer, max_gen_len=200, top_p=0.95,
seed=1234, topk=100, temperature=0.9, sft=True, device=device,
model_name="AquilaChat2-7B")
print(out)
```
## License
Aquila2 series open-source model is licensed under [ BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/AquilaChat2-7B/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf)
## Citation
Feel free to cite the repo if you think Aquila2 is useful.
```python
@misc{zhang2024aquila2technicalreport,
title={Aquila2 Technical Report},
author={Bo-Wen Zhang and Liangdong Wang and Jijie Li and Shuhao Gu and Xinya Wu and Zhengduo Zhang and Boyan Gao and Yulong Ao and Guang Liu},
year={2024},
eprint={2408.07410},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2408.07410},
}
```