|
--- |
|
license: other |
|
--- |
|
|
|
|
|
![Aquila_logo](./log.jpeg) |
|
|
|
|
|
<h4 align="center"> |
|
<p> |
|
<a href="https://huggingface.co/BAAI/AquilaChat2-34B/blob/main/README.md">English</a> |
|
<b>简体中文</b> | |
|
</p> |
|
</h4> |
|
|
|
<p align="center"> |
|
<a href="https://github.com/FlagAI-Open/Aquila2" target="_blank">Github</a> • <a href="https://github.com/FlagAI-Open/Aquila2/blob/main/assets/wechat-qrcode.jpg" target="_blank">WeChat</a> <br> |
|
</p> |
|
|
|
# 悟道·天鹰(Aquila2) |
|
|
|
我们开源了我们的 **Aquila2** 系列,现在包括基础语言模型 **Aquila2-7B** 和 **Aquila2-34B** ,对话模型 **AquilaChat2-7B** 和 **AquilaChat2-34B**,长文本对话模型**AquilaChat2-7B-16k** 和 **AquilaChat2-34B-16k** |
|
|
|
基于AquilaChat2-34B初始版本的开发经验,我们对AquilaChat2-34B进行了全面升级并发布1.2版本。评测结果显示, |
|
AquilaChat2-34B-V1.2 模型在主观评测的8个二级能力维度上,均接近或超过 GPT3.5 水平。 |
|
|
|
|
|
悟道 · 天鹰 Aquila 模型的更多细节将在官方技术报告中呈现。请关注官方渠道更新。 |
|
|
|
注:发现在预训练任务数据集中存在GSM8K测试数据泄露问题,从评测结果中删除GSM8K的评估结果。 |
|
|
|
经彻查分析,数据泄露发生于某多次合作数据团队所推荐的数学数据集A(超过2百万样本),其包含未经过处理的GSM8K测试集(1319样本)。团队只进行了常规去重和质量检测,未就是否混入GSM8K测试数据进行额外过滤检查而导致失误,实为工作中的疏漏。 |
|
|
|
团队一直严格遵循训练数据不能包含测试数据的工作原则。汲取本次因未对外部数据来源进行查证而发生的失误教训,我们在2万亿token全量数据上完成了针对21个测试数据集的排查,所涉数据集包括WTM22(en-zh)、CLUEWSC、winograde、HellaSwag、OpenBookQA、PIQA、ARC-e、BUSTSM、BoolQ、TruthfulQA、RAFT、ChID、EPRSTMT、TNEWS、OCNLI、SEM-Chinese、MMLU、C-Eval、CMMLU、CSL和HumanEval。 |
|
|
|
## 快速开始使用 AquilaChat2-34B |
|
|
|
|
|
## 使用方式/How to use |
|
|
|
### 1. 推理/Inference |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
device = torch.device("cuda") |
|
model_info = "BAAI/AquilaChat2-34B" |
|
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True) |
|
model.eval() |
|
model.to(device) |
|
text = "请给出10个要到北京旅游的理由。" |
|
tokens = tokenizer.encode_plus(text)['input_ids'] |
|
tokens = torch.tensor(tokens)[None,].to(device) |
|
stop_tokens = ["###", "[UNK]", "</s>"] |
|
with torch.no_grad(): |
|
out = model.generate(tokens, do_sample=True, max_length=512, eos_token_id=100007, bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0] |
|
out = tokenizer.decode(out.cpu().numpy().tolist()) |
|
print(out) |
|
``` |
|
|
|
|
|
## 证书/License |
|
|
|
Aquila2系列开源模型使用 [智源Aquila系列模型许可协议](https://huggingface.co/BAAI/AquilaChat2-34B/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf) |