|
--- |
|
license: other |
|
--- |
|
|
|
|
|
![Aquila_logo](./log.jpeg) |
|
|
|
|
|
<h4 align="center"> |
|
<p> |
|
<b>English</b> | |
|
<a href="https://huggingface.co/BAAI/AquilaChat2-34B-16K/blob/main/README_zh.md">简体中文</a> |
|
</p> |
|
</h4> |
|
|
|
|
|
<p align="center"> |
|
<a href="https://github.com/FlagAI-Open/Aquila2" target="_blank">Github</a> • <a href="https://github.com/FlagAI-Open/Aquila2/blob/main/assets/wechat-qrcode.jpg" target="_blank">WeChat</a> <br> |
|
</p> |
|
|
|
|
|
We opensource our **Aquila2** series, now including **Aquila2**, the base language models, namely **Aquila2-7B** and **Aquila2-34B**, as well as **AquilaChat2**, the chat models, namely **AquilaChat2-7B** and **AquilaChat2-34B**, as well as the long-text chat models, namely **AquilaChat2-7B-16k** and **AquilaChat2-34B-16k** |
|
|
|
|
|
2023.10.25 🔥 **AquilaChat2-34B-16K v1.2** is based on the previous **AquilaChat2-34B-16K**. The AquilaChat2-34B-16K-V1.2 has significantly improved long-text synthesis capabilities compared to the V1 version, |
|
approaching the level of GPT-3.5-16K. Additionally, the V1.2 version incorporates more conventional instruction fine-tuning corpora, enhancing its performance in non-long-text scenarios compared to the V1 version. |
|
|
|
The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels. |
|
|
|
|
|
## Quick Start AquilaChat2-34B-16K(Chat model) |
|
|
|
### 1. Inference |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
device = torch.device("cuda:0") |
|
model_info = "BAAI/AquilaChat2-34B-16k" |
|
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True) |
|
quantization_config=BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True, torch_dtype=torch.bfloat16, |
|
# quantization_config=quantization_config, # Uncomment this line for 4bit quantization |
|
) |
|
model.eval() |
|
model.to(device) |
|
text = "请给出10个要到北京旅游的理由。" |
|
from predict import predict |
|
out = predict(model, text, tokenizer=tokenizer, max_gen_len=200, top_p=0.9, |
|
seed=123, topk=15, temperature=1.0, sft=True, device=device, |
|
model_name="AquilaChat2-34B-16K") |
|
print(out) |
|
``` |
|
|
|
|
|
## License |
|
|
|
Aquila2 series open-source model is licensed under [ BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/AquilaChat2-34B-16K/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf) |
|
|
|
## Citation |
|
Feel free to cite the repo if you think Aquila2 is useful. |
|
|
|
```python |
|
@misc{zhang2024aquila2technicalreport, |
|
title={Aquila2 Technical Report}, |
|
author={Bo-Wen Zhang and Liangdong Wang and Jijie Li and Shuhao Gu and Xinya Wu and Zhengduo Zhang and Boyan Gao and Yulong Ao and Guang Liu}, |
|
year={2024}, |
|
eprint={2408.07410}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2408.07410}, |
|
} |
|
``` |