Multilingual-E5-small-distill-base

This model is an attempt to distill intfloat/multilingual-e5-base (teacher) into intfloat/multilingual-e5-small (student), as well as applying Matryoshka Representation Learning to it.

This was made by trying an L2 loss to teach the student model to match the same cosine similarity on text pairs as the teacher model.

The distillation dataset is composed of about 700k multilingual sentences pairs sampled for the following 3 datasets:

For code, see this github repository

Multilingual E5 Text Embeddings: A Technical Report. Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei, arXiv 2024

This model has 12 layers and the embedding size is 384.

Usage

Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.

import torch.nn.functional as F

from torch import Tensor
from transformers import AutoTokenizer, AutoModel


def average_pool(last_hidden_states: Tensor,
                 attention_mask: Tensor) -> Tensor:
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
    return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]


# Each input text should start with "query: " or "passage: ", even for non-English texts.
# For tasks other than retrieval, you can simply use the "query: " prefix.
input_texts = ['query: how much protein should a female eat',
               'query: ๅ—็“œ็š„ๅฎถๅธธๅšๆณ•',
               "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
               "passage: 1.ๆธ…็‚’ๅ—็“œไธ ๅŽŸๆ–™:ๅซฉๅ—็“œๅŠไธช ่ฐƒๆ–™:่‘ฑใ€็›ใ€็™ฝ็ณ–ใ€้ธก็ฒพ ๅšๆณ•: 1ใ€ๅ—็“œ็”จๅˆ€่–„่–„็š„ๅ‰ŠๅŽป่กจ้ขไธ€ๅฑ‚็šฎ,็”จๅ‹บๅญๅˆฎๅŽป็“ค 2ใ€ๆ“ฆๆˆ็ป†ไธ(ๆฒกๆœ‰ๆ“ฆ่œๆฟๅฐฑ็”จๅˆ€ๆ…ขๆ…ขๅˆ‡ๆˆ็ป†ไธ) 3ใ€้”…็ƒง็ƒญๆ”พๆฒน,ๅ…ฅ่‘ฑ่Šฑ็…ธๅ‡บ้ฆ™ๅ‘ณ 4ใ€ๅ…ฅๅ—็“œไธๅฟซ้€Ÿ็ฟป็‚’ไธ€ๅˆ†้’Ÿๅทฆๅณ,ๆ”พ็›ใ€ไธ€็‚น็™ฝ็ณ–ๅ’Œ้ธก็ฒพ่ฐƒๅ‘ณๅ‡บ้”… 2.้ฆ™่‘ฑ็‚’ๅ—็“œ ๅŽŸๆ–™:ๅ—็“œ1ๅช ่ฐƒๆ–™:้ฆ™่‘ฑใ€่’œๆœซใ€ๆฉ„ๆฆ„ๆฒนใ€็› ๅšๆณ•: 1ใ€ๅฐ†ๅ—็“œๅŽป็šฎ,ๅˆ‡ๆˆ็‰‡ 2ใ€ๆฒน้”…8ๆˆ็ƒญๅŽ,ๅฐ†่’œๆœซๆ”พๅ…ฅ็ˆ†้ฆ™ 3ใ€็ˆ†้ฆ™ๅŽ,ๅฐ†ๅ—็“œ็‰‡ๆ”พๅ…ฅ,็ฟป็‚’ 4ใ€ๅœจ็ฟป็‚’็š„ๅŒๆ—ถ,ๅฏไปฅไธๆ—ถๅœฐๅพ€้”…้‡ŒๅŠ ๆฐด,ไฝ†ไธ่ฆๅคชๅคš 5ใ€ๆ”พๅ…ฅ็›,็‚’ๅŒ€ 6ใ€ๅ—็“œๅทฎไธๅคš่ฝฏๅ’Œ็ปตไบ†ไน‹ๅŽ,ๅฐฑๅฏไปฅๅ…ณ็ซ 7ใ€ๆ’’ๅ…ฅ้ฆ™่‘ฑ,ๅณๅฏๅ‡บ้”…"]

tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-small')
model = AutoModel.from_pretrained('intfloat/multilingual-e5-small')

# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')

outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])

# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())

Supported Languages

This model is initialized from microsoft/Multilingual-MiniLM-L12-H384 and continually trained on a mixture of multilingual datasets. It supports 100 languages from xlm-roberta, but low-resource languages may see performance degradation.

MTEB Benchmark Evaluation (Subset)

intfloat/multilingual-e5-base intfloat/multilingual-e5-large intfloat/multilingual-e5-small avditvs/multilingual-e5-small-distill-base-0.1
STS15 0.876 0.882 0.864 0.865
BIOSSES 0.870 0.863 0.857 0.863
STS14 0.789 0.776 0.788 0.803
STS12 0.858 0.873 0.854 0.856
AskUbuntuDupQuestions 0.571 0.577 0.568 0.574
StackOverflowDupQuestions 0.485 0.486 0.486 0.485
AmazonReviewsClassification 0.476 0.470 0.452 0.450
ArguAna 0.442 0.544 0.391 0.480
ImdbClassification 0.849 0.887 0.758 0.757
STS13 0.756 0.751 0.764 0.785
STSBenchmark 0.832 0.836 0.809 0.818
STS17 0.890 0.896 0.868 0.871
SICK-R 0.835 0.838 0.835 0.850
STS22 0.645 0.675 0.640 0.648
STS16 0.814 0.824 0.822 0.820
Banking77Classification 0.741 0.749 0.706 0.706
average 0.733 0.745 0.717 0.727

Support for Sentence Transformers

Below is an example for usage with sentence_transformers.

from sentence_transformers import SentenceTransformer
model = SentenceTransformer('avditvs/multilingual-e5-small-distill-base')
input_texts = [
    'query: how much protein should a female eat',
    'query: ๅ—็“œ็š„ๅฎถๅธธๅšๆณ•',
    "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 i     s 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or traini     ng for a marathon. Check out the chart below to see how much protein you should be eating each day.",
    "passage: 1.ๆธ…็‚’ๅ—็“œไธ ๅŽŸๆ–™:ๅซฉๅ—็“œๅŠไธช ่ฐƒๆ–™:่‘ฑใ€็›ใ€็™ฝ็ณ–ใ€้ธก็ฒพ ๅšๆณ•: 1ใ€ๅ—็“œ็”จๅˆ€่–„่–„็š„ๅ‰ŠๅŽป่กจ้ขไธ€ๅฑ‚็šฎ     ,็”จๅ‹บๅญๅˆฎๅŽป็“ค 2ใ€ๆ“ฆๆˆ็ป†ไธ(ๆฒกๆœ‰ๆ“ฆ่œๆฟๅฐฑ็”จๅˆ€ๆ…ขๆ…ขๅˆ‡ๆˆ็ป†ไธ) 3ใ€้”…็ƒง็ƒญๆ”พๆฒน,ๅ…ฅ่‘ฑ่Šฑ็…ธๅ‡บ้ฆ™ๅ‘ณ 4ใ€ๅ…ฅๅ—็“œไธๅฟซ้€Ÿ็ฟป็‚’ไธ€ๅˆ†้’Ÿๅทฆๅณ,     ๆ”พ็›ใ€ไธ€็‚น็™ฝ็ณ–ๅ’Œ้ธก็ฒพ่ฐƒๅ‘ณๅ‡บ้”… 2.้ฆ™่‘ฑ็‚’ๅ—็“œ ๅŽŸๆ–™:ๅ—็“œ1ๅช ่ฐƒๆ–™:้ฆ™่‘ฑใ€่’œๆœซใ€ๆฉ„ๆฆ„ๆฒนใ€็› ๅšๆณ•: 1ใ€ๅฐ†ๅ—็“œๅŽป็šฎ,ๅˆ‡ๆˆ็‰‡ 2ใ€ๆฒน     ้”…8ๆˆ็ƒญๅŽ,ๅฐ†่’œๆœซๆ”พๅ…ฅ็ˆ†้ฆ™ 3ใ€็ˆ†้ฆ™ๅŽ,ๅฐ†ๅ—็“œ็‰‡ๆ”พๅ…ฅ,็ฟป็‚’ 4ใ€ๅœจ็ฟป็‚’็š„ๅŒๆ—ถ,ๅฏไปฅไธๆ—ถๅœฐๅพ€้”…้‡ŒๅŠ ๆฐด,ไฝ†ไธ่ฆๅคชๅคš 5ใ€ๆ”พๅ…ฅ็›,็‚’ๅŒ€      6ใ€ๅ—็“œๅทฎไธๅคš่ฝฏๅ’Œ็ปตไบ†ไน‹ๅŽ,ๅฐฑๅฏไปฅๅ…ณ็ซ 7ใ€ๆ’’ๅ…ฅ้ฆ™่‘ฑ,ๅณๅฏๅ‡บ้”…"
]
embeddings = model.encode(input_texts, normalize_embeddings=True)

Package requirements

pip install sentence_transformers~=2.2.2

Contributors: michaelfeil

FAQ

1. Do I need to add the prefix "query: " and "passage: " to input texts?

Yes, this is how the model is trained, otherwise you will see a performance degradation.

Here are some rules of thumb:

  • Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.

  • Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval.

  • Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.

2. Why are my reproduced results slightly different from reported in the model card?

Different versions of transformers and pytorch could cause negligible but non-zero performance differences.

3. Why does the cosine similarity scores distribute around 0.7 to 1.0?

This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss.

For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue.

Citation

If you find our paper or models helpful, please consider cite as follows:

@article{wang2024multilingual,
  title={Multilingual E5 Text Embeddings: A Technical Report},
  author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu},
  journal={arXiv preprint arXiv:2402.05672},
  year={2024}
}

Limitations

Long texts will be truncated to at most 512 tokens.

Downloads last month
64
Safetensors
Model size
118M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using Avditvs/multilingual-e5-small-distill-base-0.1 1