Augusto777's picture
End of training
af09fdd verified
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-ve-U13-b-80c
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8043478260869565

swiftformer-xs-ve-U13-b-80c

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7032
  • Accuracy: 0.8043

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 6 1.3860 0.2391
1.3859 2.0 13 1.3844 0.3043
1.3859 2.92 19 1.3820 0.1957
1.381 4.0 26 1.3746 0.1739
1.3573 4.92 32 1.3643 0.1957
1.3573 6.0 39 1.3561 0.1522
1.2692 6.92 45 1.3583 0.1522
1.1682 8.0 52 1.3623 0.1739
1.1682 8.92 58 1.3296 0.2609
1.1005 10.0 65 1.2663 0.3913
0.9884 10.92 71 1.3160 0.3696
0.9884 12.0 78 1.1806 0.4783
0.9111 12.92 84 1.1560 0.6087
0.8464 14.0 91 1.1350 0.5870
0.8464 14.92 97 1.0768 0.6304
0.7768 16.0 104 0.9707 0.6087
0.6754 16.92 110 0.9544 0.6522
0.6754 18.0 117 0.9885 0.6739
0.657 18.92 123 0.8578 0.6957
0.5408 20.0 130 0.7794 0.7391
0.5408 20.92 136 0.8072 0.7391
0.5094 22.0 143 0.7917 0.6739
0.5094 22.92 149 0.7975 0.6739
0.4546 24.0 156 0.7583 0.7609
0.3722 24.92 162 0.7074 0.7826
0.3722 26.0 169 0.6909 0.7391
0.3494 26.92 175 0.7032 0.8043
0.3092 28.0 182 0.8149 0.7826
0.3092 28.92 188 0.7898 0.7826
0.2643 30.0 195 0.7312 0.8043
0.2659 30.92 201 0.7598 0.7174
0.2659 32.0 208 0.7531 0.7609
0.2298 32.92 214 0.6877 0.8043
0.2147 34.0 221 0.6864 0.8043
0.2147 34.92 227 0.7656 0.7391
0.2457 36.0 234 0.8494 0.7391
0.1905 36.92 240 0.7319 0.7609
0.1905 38.0 247 0.8290 0.6957
0.2073 38.92 253 0.7963 0.7609
0.1603 40.0 260 0.8693 0.6957
0.1603 40.92 266 0.7138 0.8043
0.1852 42.0 273 0.7274 0.7609
0.1852 42.92 279 0.8353 0.6739
0.1641 44.0 286 0.9382 0.6957
0.1568 44.92 292 0.8655 0.7174
0.1568 46.0 299 0.7621 0.7391
0.1498 46.92 305 0.7944 0.7174
0.1563 48.0 312 0.8433 0.6957
0.1563 48.92 318 0.8633 0.7609
0.1554 50.0 325 0.8543 0.7391
0.1316 50.92 331 0.9127 0.7174
0.1316 52.0 338 0.9248 0.6957
0.1264 52.92 344 0.9349 0.6957
0.1082 54.0 351 0.9785 0.6739
0.1082 54.92 357 1.0165 0.6739
0.1366 56.0 364 0.8369 0.6957
0.1546 56.92 370 0.8372 0.7174
0.1546 58.0 377 0.8596 0.6957
0.1218 58.92 383 0.8054 0.7174
0.1162 60.0 390 0.7963 0.7391
0.1162 60.92 396 0.7953 0.7391
0.0876 62.0 403 0.8229 0.7391
0.0876 62.92 409 0.8365 0.7391
0.1032 64.0 416 0.8162 0.7609
0.0825 64.92 422 0.8646 0.7391
0.0825 66.0 429 0.9135 0.7391
0.1119 66.92 435 0.9164 0.7391
0.0949 68.0 442 0.9232 0.7391
0.0949 68.92 448 0.9381 0.7391
0.1227 70.0 455 0.8998 0.7391
0.0872 70.92 461 0.9632 0.7174
0.0872 72.0 468 0.8566 0.7174
0.1033 72.92 474 0.8909 0.7174
0.0876 73.85 480 0.8869 0.7609

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0