metadata
base_model: MBZUAI/swiftformer-xs
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swiftformer-xs-ve-U13-b-80c
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8043478260869565
swiftformer-xs-ve-U13-b-80c
This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7032
- Accuracy: 0.8043
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.15
- num_epochs: 80
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.92 | 6 | 1.3860 | 0.2391 |
1.3859 | 2.0 | 13 | 1.3844 | 0.3043 |
1.3859 | 2.92 | 19 | 1.3820 | 0.1957 |
1.381 | 4.0 | 26 | 1.3746 | 0.1739 |
1.3573 | 4.92 | 32 | 1.3643 | 0.1957 |
1.3573 | 6.0 | 39 | 1.3561 | 0.1522 |
1.2692 | 6.92 | 45 | 1.3583 | 0.1522 |
1.1682 | 8.0 | 52 | 1.3623 | 0.1739 |
1.1682 | 8.92 | 58 | 1.3296 | 0.2609 |
1.1005 | 10.0 | 65 | 1.2663 | 0.3913 |
0.9884 | 10.92 | 71 | 1.3160 | 0.3696 |
0.9884 | 12.0 | 78 | 1.1806 | 0.4783 |
0.9111 | 12.92 | 84 | 1.1560 | 0.6087 |
0.8464 | 14.0 | 91 | 1.1350 | 0.5870 |
0.8464 | 14.92 | 97 | 1.0768 | 0.6304 |
0.7768 | 16.0 | 104 | 0.9707 | 0.6087 |
0.6754 | 16.92 | 110 | 0.9544 | 0.6522 |
0.6754 | 18.0 | 117 | 0.9885 | 0.6739 |
0.657 | 18.92 | 123 | 0.8578 | 0.6957 |
0.5408 | 20.0 | 130 | 0.7794 | 0.7391 |
0.5408 | 20.92 | 136 | 0.8072 | 0.7391 |
0.5094 | 22.0 | 143 | 0.7917 | 0.6739 |
0.5094 | 22.92 | 149 | 0.7975 | 0.6739 |
0.4546 | 24.0 | 156 | 0.7583 | 0.7609 |
0.3722 | 24.92 | 162 | 0.7074 | 0.7826 |
0.3722 | 26.0 | 169 | 0.6909 | 0.7391 |
0.3494 | 26.92 | 175 | 0.7032 | 0.8043 |
0.3092 | 28.0 | 182 | 0.8149 | 0.7826 |
0.3092 | 28.92 | 188 | 0.7898 | 0.7826 |
0.2643 | 30.0 | 195 | 0.7312 | 0.8043 |
0.2659 | 30.92 | 201 | 0.7598 | 0.7174 |
0.2659 | 32.0 | 208 | 0.7531 | 0.7609 |
0.2298 | 32.92 | 214 | 0.6877 | 0.8043 |
0.2147 | 34.0 | 221 | 0.6864 | 0.8043 |
0.2147 | 34.92 | 227 | 0.7656 | 0.7391 |
0.2457 | 36.0 | 234 | 0.8494 | 0.7391 |
0.1905 | 36.92 | 240 | 0.7319 | 0.7609 |
0.1905 | 38.0 | 247 | 0.8290 | 0.6957 |
0.2073 | 38.92 | 253 | 0.7963 | 0.7609 |
0.1603 | 40.0 | 260 | 0.8693 | 0.6957 |
0.1603 | 40.92 | 266 | 0.7138 | 0.8043 |
0.1852 | 42.0 | 273 | 0.7274 | 0.7609 |
0.1852 | 42.92 | 279 | 0.8353 | 0.6739 |
0.1641 | 44.0 | 286 | 0.9382 | 0.6957 |
0.1568 | 44.92 | 292 | 0.8655 | 0.7174 |
0.1568 | 46.0 | 299 | 0.7621 | 0.7391 |
0.1498 | 46.92 | 305 | 0.7944 | 0.7174 |
0.1563 | 48.0 | 312 | 0.8433 | 0.6957 |
0.1563 | 48.92 | 318 | 0.8633 | 0.7609 |
0.1554 | 50.0 | 325 | 0.8543 | 0.7391 |
0.1316 | 50.92 | 331 | 0.9127 | 0.7174 |
0.1316 | 52.0 | 338 | 0.9248 | 0.6957 |
0.1264 | 52.92 | 344 | 0.9349 | 0.6957 |
0.1082 | 54.0 | 351 | 0.9785 | 0.6739 |
0.1082 | 54.92 | 357 | 1.0165 | 0.6739 |
0.1366 | 56.0 | 364 | 0.8369 | 0.6957 |
0.1546 | 56.92 | 370 | 0.8372 | 0.7174 |
0.1546 | 58.0 | 377 | 0.8596 | 0.6957 |
0.1218 | 58.92 | 383 | 0.8054 | 0.7174 |
0.1162 | 60.0 | 390 | 0.7963 | 0.7391 |
0.1162 | 60.92 | 396 | 0.7953 | 0.7391 |
0.0876 | 62.0 | 403 | 0.8229 | 0.7391 |
0.0876 | 62.92 | 409 | 0.8365 | 0.7391 |
0.1032 | 64.0 | 416 | 0.8162 | 0.7609 |
0.0825 | 64.92 | 422 | 0.8646 | 0.7391 |
0.0825 | 66.0 | 429 | 0.9135 | 0.7391 |
0.1119 | 66.92 | 435 | 0.9164 | 0.7391 |
0.0949 | 68.0 | 442 | 0.9232 | 0.7391 |
0.0949 | 68.92 | 448 | 0.9381 | 0.7391 |
0.1227 | 70.0 | 455 | 0.8998 | 0.7391 |
0.0872 | 70.92 | 461 | 0.9632 | 0.7174 |
0.0872 | 72.0 | 468 | 0.8566 | 0.7174 |
0.1033 | 72.92 | 474 | 0.8909 | 0.7174 |
0.0876 | 73.85 | 480 | 0.8869 | 0.7609 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0