Augusto777's picture
Model save
55f3373 verified
metadata
library_name: transformers
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-RD-da-colab
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5018181818181818

swiftformer-xs-RD-da-colab

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 5.5780
  • Accuracy: 0.5018

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5414 1.0 96 9.3183 0.4945
0.533 2.0 192 7.8263 0.5
0.3449 3.0 288 8.6048 0.4945
0.3157 4.0 384 8.4227 0.4945
0.2686 5.0 480 4.3190 0.5473
0.2987 6.0 576 5.0817 0.5164
0.3415 7.0 672 5.2399 0.5127
0.2396 8.0 768 6.7857 0.5018
0.2618 9.0 864 6.5777 0.5055
0.297 10.0 960 6.6086 0.5036
0.2413 11.0 1056 3.6891 0.5236
0.2074 12.0 1152 6.8991 0.5
0.2029 13.0 1248 5.8597 0.5018
0.2353 14.0 1344 7.3848 0.5036
0.1748 15.0 1440 4.9503 0.5109
0.1885 16.0 1536 7.2151 0.4982
0.1967 17.0 1632 7.9847 0.4982
0.1881 18.0 1728 4.5008 0.5109
0.172 19.0 1824 4.7565 0.5273
0.2222 20.0 1920 6.2814 0.4964
0.1673 21.0 2016 8.1814 0.4964
0.1831 22.0 2112 4.4184 0.5164
0.1121 23.0 2208 6.0737 0.4982
0.1464 24.0 2304 5.3006 0.5018
0.1343 25.0 2400 5.6166 0.5036
0.1385 26.0 2496 6.1437 0.5018
0.1153 27.0 2592 6.3232 0.5018
0.1175 28.0 2688 6.2047 0.5036
0.1107 29.0 2784 7.5461 0.4982
0.0914 30.0 2880 7.4573 0.4982
0.1123 31.0 2976 6.2770 0.4982
0.1268 32.0 3072 5.1979 0.5073
0.1074 33.0 3168 4.9253 0.5036
0.0712 34.0 3264 5.0555 0.5018
0.0792 35.0 3360 6.1480 0.4982
0.1097 36.0 3456 6.5916 0.4982
0.1035 37.0 3552 7.4887 0.4982
0.1066 38.0 3648 6.1041 0.5
0.0887 39.0 3744 6.7739 0.4982
0.0889 40.0 3840 5.5780 0.5018

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3