Augusto777's picture
End of training
a6c8b8e verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-RH
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8037383177570093

beit-base-patch16-224-RH

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4340
  • Accuracy: 0.8037

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 8 0.7927 0.5888
0.8183 2.0 16 0.7412 0.5888
0.7414 3.0 24 0.6851 0.5888
0.6837 4.0 32 0.6638 0.5888
0.6621 5.0 40 0.6619 0.5981
0.6621 6.0 48 0.6446 0.6262
0.6538 7.0 56 0.6370 0.6729
0.641 8.0 64 0.6485 0.6636
0.628 9.0 72 0.6393 0.6449
0.6187 10.0 80 0.6409 0.5794
0.6187 11.0 88 0.6360 0.5794
0.6075 12.0 96 0.6209 0.6355
0.6081 13.0 104 0.6377 0.6449
0.5886 14.0 112 0.5931 0.6729
0.5945 15.0 120 0.6108 0.6636
0.5945 16.0 128 0.5846 0.7009
0.5808 17.0 136 0.5945 0.6822
0.5636 18.0 144 0.7402 0.6636
0.5839 19.0 152 0.5661 0.6916
0.5166 20.0 160 0.5360 0.6636
0.5166 21.0 168 0.5621 0.6729
0.5165 22.0 176 0.5509 0.7196
0.5308 23.0 184 0.5602 0.7570
0.4595 24.0 192 0.4735 0.7850
0.4553 25.0 200 0.4696 0.7664
0.4553 26.0 208 0.5306 0.7850
0.4004 27.0 216 0.4819 0.7944
0.3954 28.0 224 0.4831 0.7944
0.3521 29.0 232 0.4340 0.8037
0.3436 30.0 240 0.4790 0.7757
0.3436 31.0 248 0.4720 0.7757
0.34 32.0 256 0.5283 0.7850
0.2995 33.0 264 0.4383 0.7944
0.2951 34.0 272 0.4740 0.7944
0.3094 35.0 280 0.5863 0.7664
0.3094 36.0 288 0.4483 0.7850
0.2963 37.0 296 0.4759 0.7944
0.3045 38.0 304 0.4469 0.7944
0.2739 39.0 312 0.4517 0.7850
0.2717 40.0 320 0.4654 0.7944

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0