Augusto777's picture
End of training
ce6a2c9 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-OT
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8225806451612904

beit-base-patch16-224-OT

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4801
  • Accuracy: 0.8226

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.89 4 1.7603 0.1452
No log 2.0 9 1.6852 0.1452
1.7571 2.89 13 1.5655 0.1452
1.7571 4.0 18 1.3816 0.1452
1.5255 4.89 22 1.2599 0.3226
1.5255 6.0 27 1.1534 0.4839
1.2245 6.89 31 1.0641 0.4839
1.2245 8.0 36 1.0372 0.4355
1.0438 8.89 40 0.9988 0.4355
1.0438 10.0 45 0.9260 0.5161
1.0438 10.89 49 0.9085 0.7097
0.9727 12.0 54 0.8433 0.7258
0.9727 12.89 58 0.7529 0.7742
0.8469 14.0 63 0.7187 0.7581
0.8469 14.89 67 0.6806 0.7258
0.6908 16.0 72 0.6576 0.7581
0.6908 16.89 76 0.5742 0.7903
0.6064 18.0 81 0.6447 0.7581
0.6064 18.89 85 0.5602 0.7742
0.5303 20.0 90 0.4943 0.7903
0.5303 20.89 94 0.5304 0.7903
0.5303 22.0 99 0.4801 0.8226
0.4903 22.89 103 0.4849 0.8226
0.4903 24.0 108 0.5710 0.7742
0.4261 24.89 112 0.4803 0.7903
0.4261 26.0 117 0.5671 0.7258
0.4122 26.89 121 0.4585 0.8065
0.4122 28.0 126 0.5910 0.7097
0.3739 28.89 130 0.5821 0.7581
0.3739 30.0 135 0.5329 0.7742
0.3739 30.89 139 0.4423 0.8226
0.3896 32.0 144 0.4716 0.7581
0.3896 32.89 148 0.4786 0.7903
0.3472 34.0 153 0.4538 0.7903
0.3472 34.89 157 0.4553 0.7903
0.3349 35.56 160 0.4528 0.7903

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0