Augusto777's picture
End of training
7d74ec9 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-DMAE
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7608695652173914

beit-base-patch16-224-DMAE

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6703
  • Accuracy: 0.7609

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 1.3117 0.4565
No log 2.0 7 1.2539 0.4565
1.2875 2.86 10 1.2355 0.4565
1.2875 4.0 14 1.1827 0.4783
1.2875 4.86 17 1.0758 0.6522
1.1369 6.0 21 1.0942 0.5
1.1369 6.86 24 1.1312 0.5217
1.1369 8.0 28 1.0906 0.5217
1.1009 8.86 31 0.8704 0.6957
1.1009 10.0 35 1.0023 0.5870
1.1009 10.86 38 1.0288 0.5870
0.9152 12.0 42 0.7874 0.7174
0.9152 12.86 45 0.7166 0.7174
0.9152 14.0 49 0.7269 0.6957
0.8444 14.86 52 0.8481 0.6957
0.8444 16.0 56 0.7589 0.6304
0.8444 16.86 59 0.7590 0.6304
0.8085 18.0 63 0.8320 0.6304
0.8085 18.86 66 0.7469 0.7391
0.6941 20.0 70 0.8337 0.6304
0.6941 20.86 73 0.7928 0.7174
0.6941 22.0 77 0.8765 0.6522
0.5822 22.86 80 0.7139 0.7174
0.5822 24.0 84 0.7477 0.6957
0.5822 24.86 87 0.6987 0.7174
0.5174 26.0 91 0.6815 0.7391
0.5174 26.86 94 0.7332 0.7174
0.5174 28.0 98 0.6582 0.7391
0.48 28.86 101 0.7273 0.7391
0.48 30.0 105 0.7595 0.6957
0.48 30.86 108 0.7136 0.7391
0.4159 32.0 112 0.6703 0.7609
0.4159 32.86 115 0.6736 0.7609
0.4159 34.0 119 0.6866 0.7609
0.3472 34.29 120 0.6873 0.7609

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0