SF-RHS-DA / README.md
Augusto777's picture
End of training
d7b2309 verified
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: SF-RHS-DA
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.822429906542056

SF-RHS-DA

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5233
  • Accuracy: 0.8224

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.693 0.99 35 0.6927 0.6822
0.6919 2.0 71 0.6910 0.6916
0.6872 2.99 106 0.6821 0.6822
0.6613 4.0 142 0.6552 0.6542
0.6196 4.99 177 0.6403 0.6168
0.5695 6.0 213 0.6128 0.6449
0.5436 6.99 248 0.6765 0.5701
0.4836 8.0 284 0.6075 0.6542
0.4902 8.99 319 0.5788 0.6355
0.4759 10.0 355 0.5284 0.7196
0.4746 10.99 390 0.5532 0.6822
0.4067 12.0 426 0.5356 0.7383
0.4138 12.99 461 0.5042 0.7477
0.3752 14.0 497 0.5063 0.7383
0.4158 14.99 532 0.4952 0.7570
0.3646 16.0 568 0.5440 0.7383
0.3644 16.99 603 0.5146 0.7757
0.3411 18.0 639 0.5208 0.7757
0.3052 18.99 674 0.5785 0.7383
0.3398 20.0 710 0.5366 0.7383
0.3103 20.99 745 0.5751 0.7290
0.3168 22.0 781 0.5194 0.7664
0.2927 22.99 816 0.5008 0.7944
0.2874 24.0 852 0.5216 0.7944
0.3021 24.99 887 0.5695 0.7570
0.2978 26.0 923 0.5643 0.7570
0.2743 26.99 958 0.5767 0.7570
0.2753 28.0 994 0.5125 0.7664
0.2773 28.99 1029 0.5246 0.7664
0.2775 30.0 1065 0.5473 0.7850
0.268 30.99 1100 0.5286 0.7664
0.2586 32.0 1136 0.5233 0.7850
0.2458 32.99 1171 0.5451 0.7757
0.2524 34.0 1207 0.5268 0.7850
0.2438 34.99 1242 0.5228 0.7757
0.2429 36.0 1278 0.5391 0.7664
0.2689 36.99 1313 0.5237 0.7850
0.2362 38.0 1349 0.5561 0.7664
0.2656 38.99 1384 0.5233 0.8224
0.264 39.44 1400 0.5112 0.8037

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0