BEiT-RHS-NDA / README.md
Augusto777's picture
End of training
59e8472 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: BEiT-RHS-NDA
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8317757009345794

BEiT-RHS-NDA

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5322
  • Accuracy: 0.8318

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 8 0.6851 0.5888
0.6911 2.0 16 0.6721 0.5888
0.6739 3.0 24 0.6504 0.5888
0.6595 4.0 32 0.6432 0.5888
0.646 5.0 40 0.6317 0.6822
0.646 6.0 48 0.6175 0.6916
0.6142 7.0 56 0.6270 0.6916
0.608 8.0 64 0.6618 0.6916
0.5927 9.0 72 0.5347 0.6916
0.5333 10.0 80 0.5744 0.6449
0.5333 11.0 88 0.4974 0.7477
0.4987 12.0 96 0.5970 0.6449
0.5421 13.0 104 0.5137 0.7383
0.4881 14.0 112 0.4727 0.7664
0.4408 15.0 120 0.5161 0.7664
0.4408 16.0 128 0.6732 0.6916
0.4923 17.0 136 0.6568 0.7009
0.4135 18.0 144 0.6653 0.7009
0.4308 19.0 152 0.6032 0.7196
0.3837 20.0 160 0.4492 0.8037
0.3837 21.0 168 0.4549 0.7944
0.3297 22.0 176 0.5526 0.7664
0.3264 23.0 184 0.5172 0.7944
0.3487 24.0 192 0.5105 0.7664
0.2892 25.0 200 0.4566 0.7757
0.2892 26.0 208 0.5233 0.7944
0.2505 27.0 216 0.4817 0.7944
0.2542 28.0 224 0.5035 0.8037
0.2285 29.0 232 0.5282 0.7944
0.2053 30.0 240 0.5638 0.8131
0.2053 31.0 248 0.6190 0.7570
0.2205 32.0 256 0.6142 0.7850
0.2081 33.0 264 0.5752 0.7850
0.2075 34.0 272 0.5322 0.8318
0.2286 35.0 280 0.5313 0.7944
0.2286 36.0 288 0.5189 0.8131
0.2008 37.0 296 0.5590 0.7850
0.1884 38.0 304 0.5488 0.7944
0.1819 39.0 312 0.5563 0.8037
0.1698 40.0 320 0.5679 0.7944

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0