BEiT-DMAE-XDA-REVAL-80

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2505
  • Accuracy: 0.8043

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5404 1.0 60 1.2860 0.4565
1.2921 2.0 120 1.1580 0.4783
0.8862 3.0 180 0.9703 0.4783
0.5719 4.0 240 0.8845 0.6957
0.3656 5.0 300 0.7957 0.7174
0.2146 6.0 360 0.8632 0.6957
0.182 7.0 420 1.0534 0.6739
0.1809 8.0 480 1.1159 0.7609
0.1687 9.0 540 0.7967 0.7609
0.1798 10.0 600 1.1140 0.6957
0.1961 11.0 660 1.6409 0.5870
0.1475 12.0 720 1.4891 0.6739
0.0964 13.0 780 1.6115 0.6739
0.0797 14.0 840 1.4461 0.6739
0.069 15.0 900 1.3023 0.6957
0.0937 16.0 960 1.2890 0.6957
0.105 17.0 1020 1.1601 0.7609
0.0909 18.0 1080 1.0927 0.7609
0.0561 19.0 1140 1.4284 0.7391
0.102 20.0 1200 1.4661 0.6739
0.0632 21.0 1260 1.2734 0.7174
0.0396 22.0 1320 1.8164 0.6522
0.0831 23.0 1380 1.5103 0.7391
0.0696 24.0 1440 1.6661 0.6739
0.0787 25.0 1500 1.5281 0.7391
0.0318 26.0 1560 1.4044 0.7609
0.056 27.0 1620 1.2505 0.8043
0.0379 28.0 1680 1.4474 0.7174
0.0475 29.0 1740 1.6855 0.6957
0.0315 30.0 1800 1.3772 0.7609
0.0661 31.0 1860 1.7190 0.6522
0.0401 32.0 1920 1.2325 0.8043
0.0503 33.0 1980 1.6231 0.7174
0.0585 34.0 2040 1.4190 0.7609
0.0338 35.0 2100 1.3640 0.7391
0.0343 36.0 2160 2.1224 0.6304
0.064 37.0 2220 2.0131 0.6739
0.0253 38.0 2280 1.8281 0.7391
0.0435 39.0 2340 1.4020 0.6957
0.0344 40.0 2400 1.4519 0.7391
0.0114 41.0 2460 1.8910 0.6957
0.0366 42.0 2520 1.3172 0.7609
0.0331 43.0 2580 1.3786 0.7391
0.0298 44.0 2640 1.3052 0.7391
0.0426 45.0 2700 1.2308 0.7826
0.0259 46.0 2760 1.6801 0.7391
0.0181 47.0 2820 1.6076 0.7174
0.0266 48.0 2880 1.4670 0.7826
0.0239 49.0 2940 1.4582 0.7174
0.0174 50.0 3000 1.4778 0.7826
0.0365 51.0 3060 1.7034 0.7174
0.0124 52.0 3120 2.0013 0.7174
0.0299 53.0 3180 1.8081 0.7174
0.0042 54.0 3240 1.6417 0.7391
0.0305 55.0 3300 1.7993 0.7391
0.026 56.0 3360 2.2341 0.7174
0.0207 57.0 3420 1.6739 0.7391
0.0063 58.0 3480 1.8008 0.7174
0.0052 59.0 3540 2.1553 0.6957
0.0061 60.0 3600 2.1446 0.6957
0.0017 61.0 3660 2.2132 0.6957
0.0143 62.0 3720 1.7295 0.7174
0.004 63.0 3780 1.5038 0.8043
0.0164 64.0 3840 1.5734 0.7609
0.0105 65.0 3900 1.6073 0.7174
0.0161 66.0 3960 1.6313 0.7391
0.0073 67.0 4020 1.7684 0.7391
0.004 68.0 4080 1.5423 0.7609
0.0096 69.0 4140 1.8458 0.7174
0.0279 70.0 4200 2.0681 0.6739
0.0067 71.0 4260 2.0441 0.6739
0.0145 72.0 4320 2.1306 0.6957
0.0084 73.0 4380 2.0877 0.6957
0.0068 74.0 4440 2.1404 0.6957
0.0044 75.0 4500 2.1604 0.6957
0.0143 76.0 4560 2.1835 0.6957
0.0105 77.0 4620 2.2572 0.6739
0.0036 78.0 4680 2.2357 0.6739
0.0205 79.0 4740 2.2578 0.6739
0.0095 80.0 4800 2.2530 0.6739

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
2
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for Augusto777/BEiT-DMAE-XDA-REVAL-80

Finetuned
(294)
this model

Evaluation results