BEiT-DMAE-DA / README.md
Augusto777's picture
End of training
8894aa2 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: BEiT-DMAE-DA
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9130434782608695

BEiT-DMAE-DA

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4816
  • Accuracy: 0.9130

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3475 0.96 11 1.3279 0.3261
1.1875 2.0 23 1.1320 0.3478
0.9998 2.96 34 0.9957 0.5435
0.8836 4.0 46 0.8436 0.5870
0.7593 4.96 57 0.7904 0.6304
0.6939 6.0 69 0.6656 0.8261
0.4924 6.96 80 0.6724 0.6739
0.4444 8.0 92 0.5951 0.7826
0.337 8.96 103 0.5222 0.8261
0.3213 10.0 115 0.6814 0.8043
0.2689 10.96 126 0.5913 0.7826
0.2538 12.0 138 0.6228 0.7826
0.2032 12.96 149 0.6992 0.7609
0.2152 14.0 161 0.7730 0.7609
0.1713 14.96 172 0.7762 0.7609
0.2042 16.0 184 0.7652 0.7174
0.1668 16.96 195 0.5512 0.8478
0.1743 18.0 207 0.7311 0.7826
0.1226 18.96 218 0.7115 0.8043
0.1537 20.0 230 0.6800 0.7609
0.1311 20.96 241 0.5864 0.8478
0.1335 22.0 253 0.6346 0.8261
0.0981 22.96 264 0.6541 0.8043
0.1248 24.0 276 0.7017 0.8261
0.1183 24.96 287 0.6964 0.8261
0.0946 26.0 299 0.6450 0.8261
0.0957 26.96 310 0.7057 0.8043
0.1692 28.0 322 0.6635 0.8043
0.0967 28.96 333 0.5040 0.8696
0.094 30.0 345 0.5588 0.8913
0.0843 30.96 356 0.5398 0.8696
0.0851 32.0 368 0.5806 0.8478
0.0955 32.96 379 0.4816 0.9130
0.1157 34.0 391 0.5289 0.8696
0.072 34.96 402 0.5657 0.8913
0.091 36.0 414 0.5566 0.8478
0.0891 36.96 425 0.5729 0.8478
0.0732 38.0 437 0.5915 0.8261
0.0647 38.26 440 0.5902 0.8261

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0