distilbart-xsum-6-6-finetuned-bbc-news

This model is a fine-tuned version of sshleifer/distilbart-xsum-6-6 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2624
  • Rouge1: 62.1927
  • Rouge2: 54.4754
  • Rougel: 55.868
  • Rougelsum: 60.9345

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.4213 1.0 445 0.2005 59.4886 51.7791 53.5126 58.3405
0.1355 2.0 890 0.1887 61.7474 54.2823 55.7324 60.5787
0.0891 3.0 1335 0.1932 61.1312 53.103 54.6992 59.8923
0.0571 4.0 1780 0.2141 60.8797 52.6195 54.4402 59.5298
0.0375 5.0 2225 0.2318 61.7875 53.8753 55.5068 60.5448
0.0251 6.0 2670 0.2484 62.3535 54.6029 56.2804 61.031
0.0175 7.0 3115 0.2542 61.6351 53.8248 55.6399 60.3765
0.0133 8.0 3560 0.2624 62.1927 54.4754 55.868 60.9345

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.