bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news

This model is a fine-tuned version of mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6835
  • Rouge1: 58.9345
  • Rouge2: 47.1037
  • Rougel: 40.9839
  • Rougelsum: 57.6981

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.8246 1.0 223 0.7050 55.7882 42.9793 38.4511 54.3125
0.6414 2.0 446 0.6834 55.149 42.664 38.3864 53.7712
0.5603 3.0 669 0.6815 56.9756 44.8057 39.1377 55.5815
0.5079 4.0 892 0.6749 57.7397 45.6267 40.0509 56.3886
0.4622 5.0 1115 0.6781 58.07 45.9102 40.2704 56.7008
0.4263 6.0 1338 0.6798 58.1215 45.976 40.256 56.8203
0.399 7.0 1561 0.6798 58.5486 46.6901 40.8045 57.2947
0.3815 8.0 1784 0.6835 58.9345 47.1037 40.9839 57.6981

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.