results
This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3873
- Accuracy: 0.875
- F1: 0.8562
- Recall: 0.875
- Precision: 0.9167
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2532
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
---|---|---|---|---|---|---|---|
1.1366 | 0.1252 | 317 | 1.0356 | 0.6875 | 0.6801 | 0.6875 | 0.8125 |
0.5459 | 1.1252 | 634 | 0.7478 | 0.75 | 0.7467 | 0.75 | 0.8781 |
0.2704 | 2.1252 | 951 | 0.5667 | 0.75 | 0.7240 | 0.75 | 0.8625 |
0.4092 | 3.1252 | 1268 | 0.3873 | 0.875 | 0.8562 | 0.875 | 0.9167 |
0.3253 | 4.1252 | 1585 | 0.3657 | 0.875 | 0.8562 | 0.875 | 0.9167 |
0.1802 | 5.1252 | 1902 | 0.3425 | 0.875 | 0.8646 | 0.875 | 0.9375 |
0.1428 | 6.1252 | 2219 | 0.3689 | 0.8125 | 0.8003 | 0.8125 | 0.8906 |
Framework versions
- Transformers 4.44.2
- Pytorch 1.13.1+cu117
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Asadali12/Cricket_Shot_Detection_vivit_finetuned_1
Base model
google/vivit-b-16x2-kinetics400