Visualize in Weights & Biases

results

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3873
  • Accuracy: 0.875
  • F1: 0.8562
  • Recall: 0.875
  • Precision: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 2532

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
1.1366 0.1252 317 1.0356 0.6875 0.6801 0.6875 0.8125
0.5459 1.1252 634 0.7478 0.75 0.7467 0.75 0.8781
0.2704 2.1252 951 0.5667 0.75 0.7240 0.75 0.8625
0.4092 3.1252 1268 0.3873 0.875 0.8562 0.875 0.9167
0.3253 4.1252 1585 0.3657 0.875 0.8562 0.875 0.9167
0.1802 5.1252 1902 0.3425 0.875 0.8646 0.875 0.9375
0.1428 6.1252 2219 0.3689 0.8125 0.8003 0.8125 0.8906

Framework versions

  • Transformers 4.44.2
  • Pytorch 1.13.1+cu117
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
25
Safetensors
Model size
88.7M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Asadali12/Cricket_Shot_Detection_vivit_finetuned_1

Finetuned
(49)
this model