Model Trained Using AutoTrain

This model was trained using AutoTrain. For more information, please visit AutoTrain.

Usage

pip install peft
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import AutoPeftModelForCausalLM, PeftConfig

model_id = "Aryan-401/phi-3-mini-4k-instruct-finetune-guanaco"
peft_model=AutoPeftModelForCausalLM.from_pretrained(model_id)

model = peft_model.merge_and_unload()
tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "user", "content": "What is the Value of Pi?"}
]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = model.to(device).eval()

input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to(device), max_length= 1000)
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)

print(response)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.