Load model directly

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("Arjun4707/Distilbert-base-uncased_dair-ai_emotion")

model = AutoModelForSequenceClassification.from_pretrained("Arjun4707/Distilbert-base-uncased_dair-ai_emotion", from_tf = True)

for more check out this notebook: https://github.com/BhammarArjun/NLP/blob/main/Model_validation_distilbert_emotions.ipynb

Model description

Model takes text as input and outputs an predictions for one of the 6 emotions.

  [label_0 :'anger', label_1 : 'fear', 
   label_2 : 'joy', label_3 : 'love', 
   label_4 : 'sadness', label_5 : 'surprise']

      

Distilbert-base-uncased_dair-ai_emotion

This model is a fine-tuned version of distilbert-base-uncased on an dair-ai/emotion dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0896
  • Train Accuracy: 0.9582
  • Validation Loss: 0.1326
  • Validation Accuracy: 0.9375
  • Epoch: 4

Intended uses & limitations

Use to identify an emotion of a user from above mentioned emotions. The statements starts with 'I' in data. Need further training

Training and evaluation data

Training data size = 16000, validation data = 2000, and test data = 2000

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.5820 0.8014 0.2002 0.9305 0
0.1598 0.9366 0.1431 0.9355 1
0.1101 0.9515 0.1390 0.9355 2
0.0896 0.9582 0.1326 0.9375 3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Arjun4707/Distilbert-base-uncased_dair-ai_emotion

Finetuned
(7150)
this model

Dataset used to train Arjun4707/Distilbert-base-uncased_dair-ai_emotion