Arbi-Houssem's picture
End of training
abd57f3 verified
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Arbi-Houssem/Tunisian_dataset_STT-TTS15s_filtred1.0_Mixed
metrics:
  - wer
model-index:
  - name: Whisper Tunisien
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Tunisian_dataset_STT-TTS15s_filtred1.0_Mixed
          type: Arbi-Houssem/Tunisian_dataset_STT-TTS15s_filtred1.0_Mixed
          args: 'config: ar, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 44.46994692296657

Whisper Tunisien

This model is a fine-tuned version of openai/whisper-small on the Tunisian_dataset_STT-TTS15s_filtred1.0_Mixed dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1841
  • Wer: 44.4699

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3626 4.5045 500 0.8379 53.0340
0.0527 9.0090 1000 0.9350 48.5440
0.0111 13.5135 1500 1.0400 49.4907
0.0049 18.0180 2000 1.1030 44.6564
0.0017 22.5225 2500 1.1338 44.7568
0.0014 27.0270 3000 1.1618 44.8142
0.0009 31.5315 3500 1.1784 44.8429
0.0009 36.0360 4000 1.1841 44.4699

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1