|
--- |
|
language: |
|
- mn |
|
base_model: bayartsogt/mongolian-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: roberta-base-ner-demo |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-base-ner-demo |
|
|
|
This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1834 |
|
- Precision: 0.6839 |
|
- Recall: 0.7644 |
|
- F1: 0.7219 |
|
- Accuracy: 0.9459 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.7672 | 1.0 | 20 | 0.5162 | 0.0825 | 0.0401 | 0.0540 | 0.8256 | |
|
| 0.3886 | 2.0 | 40 | 0.3017 | 0.4778 | 0.5113 | 0.4939 | 0.9061 | |
|
| 0.2163 | 3.0 | 60 | 0.2214 | 0.5543 | 0.6266 | 0.5882 | 0.9225 | |
|
| 0.1199 | 4.0 | 80 | 0.1942 | 0.6346 | 0.7268 | 0.6776 | 0.9359 | |
|
| 0.0742 | 5.0 | 100 | 0.1852 | 0.6396 | 0.7293 | 0.6815 | 0.9409 | |
|
| 0.0555 | 6.0 | 120 | 0.1811 | 0.6943 | 0.7569 | 0.7242 | 0.9449 | |
|
| 0.0407 | 7.0 | 140 | 0.1860 | 0.6804 | 0.7469 | 0.7121 | 0.9439 | |
|
| 0.0346 | 8.0 | 160 | 0.1876 | 0.6952 | 0.7544 | 0.7236 | 0.9463 | |
|
| 0.0302 | 9.0 | 180 | 0.1820 | 0.6868 | 0.7694 | 0.7258 | 0.9459 | |
|
| 0.0289 | 10.0 | 200 | 0.1834 | 0.6839 | 0.7644 | 0.7219 | 0.9459 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|