Uploaded model

  • Developed by: Angelectronic
  • License: apache-2.0
  • Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Evaluation

  • ViMMRC test set: 0.8385 accuracy

Training results

Training Loss Accuracy Step Validation Loss
1.836600 0.822141 240 2.302049
1.648300 0.827586 480 2.330861
1.511700 0.833031 720 2.388702
1.376200 0.833031 960 2.528673
1.240900 0.833031 1200 2.592396
1.069600 0.831216 1440 2.697354
0.860700 0.827586 1680 2.827819
0.767000 0.838475 1920 2.826283
0.677900 0.822142 2160 2.965557
0.594500 0.822142 2400 2.979151
0.514500 0.820327 2640 3.109596
0.406800 0.818512 2880 3.196722
0.320700 0.818512 3120 3.232843
0.296100 0.822142 3360 3.294877
0.273400 0.818512 3600 3.346133
0.262800 0.816697 3840 3.344488
0.255100 0.818511 4080 3.349281

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 3

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Angelectronic/llama3-QA-ViMMRC-Squad

Finetuned
(894)
this model