ViTForImageClassification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the CIFAR10 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1199
  • Accuracy: 0.9678

Model description

A detailed description of model architecture can be found here

Training and evaluation data

CIFAR10

Training procedure

Straightforward tuning of all model's parameters.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 128
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2995 0.27 100 0.3419 0.9108
0.2289 0.53 200 0.2482 0.9288
0.1811 0.8 300 0.2139 0.9357
0.0797 1.07 400 0.1813 0.946
0.1128 1.33 500 0.1741 0.9452
0.086 1.6 600 0.1659 0.9513
0.0815 1.87 700 0.1468 0.9547
0.048 2.13 800 0.1393 0.9592
0.021 2.4 900 0.1399 0.9603
0.0271 2.67 1000 0.1334 0.9642
0.0231 2.93 1100 0.1228 0.9658
0.0101 3.2 1200 0.1229 0.9673
0.0041 3.47 1300 0.1189 0.9675
0.0043 3.73 1400 0.1165 0.9683
0.0067 4.0 1500 0.1145 0.9697

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.14.1
Downloads last month
29
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Andron00e/ViTForImageClassification

Finetuned
(1821)
this model