ESM-2 Full Finetune for Binding Sites

This model is a full finetune of ESM-2, to illustrate how full finetuning overfits and generalizes quite poorly compared to LoRA and QLoRA finetuning. This model was finetuned on the 600K dataset. We also note that on the 24GB A10 GPU, the batch size has to be significantly smaller than when using LoRA or QLoRA. To finetune a similar model, use this script.

Overfitting

Train metrics:

{'eval_loss': 0.13651661574840546,
'eval_accuracy': 0.9656322509450104,
'eval_precision': 0.38616650354104665,
'eval_recall': 0.9618091516702236,
'eval_f1': 0.55107594226701,
'eval_auc': 0.9637635647574605,
'eval_mcc': 0.5977943918337999}

Test metrics:

{'eval_loss': 0.2910114824771881,
'eval_accuracy': 0.923270649115702,
'eval_precision': 0.14887069127765168,
'eval_recall': 0.533511928419524,
'eval_f1': 0.23278520670392827,
'eval_auc': 0.7327381144575454,
'eval_mcc': 0.25329082069818704}
Downloads last month
106
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Collection including AmelieSchreiber/esm2_t6_8M_binding_sites_finetune_600K