Alvin-Nahabwe's picture
update model card README.md
39699a9
|
raw
history blame
2.36 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-lg
    results: []

wav2vec2-large-xls-r-300m-lg

This model is a fine-tuned version of Alvin-Nahabwe/wav2vec2-large-xls-r-300m-gn on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2283
  • Wer: 0.1569

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 22
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2883 1.39 400 0.2180 0.2128
0.2603 2.78 800 0.2108 0.2082
0.2341 4.17 1200 0.2127 0.2085
0.2194 5.56 1600 0.2004 0.2050
0.1846 6.95 2000 0.1961 0.1898
0.1627 8.34 2400 0.1919 0.1779
0.1464 9.75 2800 0.1867 0.1677
0.1273 11.14 3200 0.1949 0.1710
0.1153 12.53 3600 0.1965 0.1639
0.1006 13.93 4000 0.1983 0.1603
0.1056 15.32 4400 0.2159 0.1686
0.1011 16.71 4800 0.2104 0.1663
0.0895 18.1 5200 0.2211 0.1634
0.0818 19.49 5600 0.2234 0.1610
0.0778 20.88 6000 0.2283 0.1569

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3