Breast Cancer Diagnosis NER model

Feature Description
Name es_BreastCancerNER
Version 0.0.0
spaCy >=3.5.0,<3.6.0
Default Pipeline transformer, ner
Components transformer, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources n/a
License mit
Author Álvaro García Barragán

Label Scheme

View label scheme (21 labels for 1 components)
Component Labels
ner CANCER_CONCEPT, CANCER_EXP, CANCER_GRADE, CANCER_INTRTYPE, CANCER_LOC, CANCER_MET, CANCER_REC, CANCER_STAGE, CANCER_SUBTYPE, CANCER_TYPE, DATE, IMPLICIT_DATE, MOLEC_MARKER, SURGERY, TNM, TRAT, TRAT_DRUG, TRAT_FREQ, TRAT_INTERVAL, TRAT_QUANTITY, TRAT_SHEMA

Accuracy

Type Score
ENTS_F 93.21
ENTS_P 92.46
ENTS_R 93.97
TRANSFORMER_LOSS 45014.63
NER_LOSS 1216054.67

Citation

If you use our work in your research, please cite it as follows:

@INPROCEEDINGS{garcia-barraganCBMS2023,
  author={García-Barragán, Alvaro and Solarte-Pabón, Oswaldo and Nedostup, Georgiy and Provencio, Mariano and Menasalvas, Ernestina and Robles, Victor},
  booktitle={2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS)},
  title={Structuring Breast Cancer Spanish Electronic Health Records Using Deep Learning},
  year={2023},
  pages={404-409},
  keywords={Natural Language Processing (NLP), Information extraction, Deep Learning, Breast cancer.},
  doi={10.1109/CBMS58004.2023.00252}
}
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results