|
--- |
|
tags: |
|
- mteb |
|
- sentence-transformers |
|
- transformers |
|
- Qwen |
|
- sentence-similarity |
|
license: apache-2.0 |
|
model-index: |
|
- name: gte-qwen1.5-7b |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 83.16417910447761 |
|
- type: ap |
|
value: 49.37655308937739 |
|
- type: f1 |
|
value: 77.52987230462615 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 96.6959 |
|
- type: ap |
|
value: 94.90885739242472 |
|
- type: f1 |
|
value: 96.69477648952649 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 62.168 |
|
- type: f1 |
|
value: 60.411431278343755 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a |
|
metrics: |
|
- type: map_at_1 |
|
value: 36.415 |
|
- type: map_at_10 |
|
value: 53.505 |
|
- type: map_at_100 |
|
value: 54.013 |
|
- type: map_at_1000 |
|
value: 54.013 |
|
- type: map_at_3 |
|
value: 48.459 |
|
- type: map_at_5 |
|
value: 51.524 |
|
- type: mrr_at_1 |
|
value: 36.842000000000006 |
|
- type: mrr_at_10 |
|
value: 53.679 |
|
- type: mrr_at_100 |
|
value: 54.17999999999999 |
|
- type: mrr_at_1000 |
|
value: 54.17999999999999 |
|
- type: mrr_at_3 |
|
value: 48.613 |
|
- type: mrr_at_5 |
|
value: 51.696 |
|
- type: ndcg_at_1 |
|
value: 36.415 |
|
- type: ndcg_at_10 |
|
value: 62.644999999999996 |
|
- type: ndcg_at_100 |
|
value: 64.60000000000001 |
|
- type: ndcg_at_1000 |
|
value: 64.60000000000001 |
|
- type: ndcg_at_3 |
|
value: 52.44799999999999 |
|
- type: ndcg_at_5 |
|
value: 57.964000000000006 |
|
- type: precision_at_1 |
|
value: 36.415 |
|
- type: precision_at_10 |
|
value: 9.161 |
|
- type: precision_at_100 |
|
value: 0.996 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 21.337 |
|
- type: precision_at_5 |
|
value: 15.476999999999999 |
|
- type: recall_at_1 |
|
value: 36.415 |
|
- type: recall_at_10 |
|
value: 91.607 |
|
- type: recall_at_100 |
|
value: 99.644 |
|
- type: recall_at_1000 |
|
value: 99.644 |
|
- type: recall_at_3 |
|
value: 64.011 |
|
- type: recall_at_5 |
|
value: 77.383 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 56.40183100758549 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 51.44814171373338 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 66.00208703259058 |
|
- type: mrr |
|
value: 78.95165545442553 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.12591694410098 |
|
- type: cos_sim_spearman |
|
value: 81.11570369802254 |
|
- type: euclidean_pearson |
|
value: 80.91709076204458 |
|
- type: euclidean_spearman |
|
value: 81.11570369802254 |
|
- type: manhattan_pearson |
|
value: 80.71719561024605 |
|
- type: manhattan_spearman |
|
value: 81.21510355327713 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 81.67857142857142 |
|
- type: f1 |
|
value: 80.84103272994895 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 49.008657468552016 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 45.05901064421589 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: f46a197baaae43b4f621051089b82a364682dfeb |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.694 |
|
- type: map_at_10 |
|
value: 43.895 |
|
- type: map_at_100 |
|
value: 45.797 |
|
- type: map_at_1000 |
|
value: 45.922000000000004 |
|
- type: map_at_3 |
|
value: 40.141 |
|
- type: map_at_5 |
|
value: 42.077 |
|
- type: mrr_at_1 |
|
value: 40.2 |
|
- type: mrr_at_10 |
|
value: 50.11 |
|
- type: mrr_at_100 |
|
value: 51.101 |
|
- type: mrr_at_1000 |
|
value: 51.13100000000001 |
|
- type: mrr_at_3 |
|
value: 47.735 |
|
- type: mrr_at_5 |
|
value: 48.922 |
|
- type: ndcg_at_1 |
|
value: 40.2 |
|
- type: ndcg_at_10 |
|
value: 50.449999999999996 |
|
- type: ndcg_at_100 |
|
value: 56.85 |
|
- type: ndcg_at_1000 |
|
value: 58.345 |
|
- type: ndcg_at_3 |
|
value: 45.261 |
|
- type: ndcg_at_5 |
|
value: 47.298 |
|
- type: precision_at_1 |
|
value: 40.2 |
|
- type: precision_at_10 |
|
value: 9.742 |
|
- type: precision_at_100 |
|
value: 1.6480000000000001 |
|
- type: precision_at_1000 |
|
value: 0.214 |
|
- type: precision_at_3 |
|
value: 21.841 |
|
- type: precision_at_5 |
|
value: 15.68 |
|
- type: recall_at_1 |
|
value: 32.694 |
|
- type: recall_at_10 |
|
value: 62.751999999999995 |
|
- type: recall_at_100 |
|
value: 88.619 |
|
- type: recall_at_1000 |
|
value: 97.386 |
|
- type: recall_at_3 |
|
value: 47.087 |
|
- type: recall_at_5 |
|
value: 53.108999999999995 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.849 |
|
- type: map_at_10 |
|
value: 37.938 |
|
- type: map_at_100 |
|
value: 39.211 |
|
- type: map_at_1000 |
|
value: 39.333 |
|
- type: map_at_3 |
|
value: 35.314 |
|
- type: map_at_5 |
|
value: 36.666 |
|
- type: mrr_at_1 |
|
value: 34.904 |
|
- type: mrr_at_10 |
|
value: 43.869 |
|
- type: mrr_at_100 |
|
value: 44.614 |
|
- type: mrr_at_1000 |
|
value: 44.662 |
|
- type: mrr_at_3 |
|
value: 41.815000000000005 |
|
- type: mrr_at_5 |
|
value: 42.943 |
|
- type: ndcg_at_1 |
|
value: 34.904 |
|
- type: ndcg_at_10 |
|
value: 43.605 |
|
- type: ndcg_at_100 |
|
value: 48.339999999999996 |
|
- type: ndcg_at_1000 |
|
value: 50.470000000000006 |
|
- type: ndcg_at_3 |
|
value: 39.835 |
|
- type: ndcg_at_5 |
|
value: 41.364000000000004 |
|
- type: precision_at_1 |
|
value: 34.904 |
|
- type: precision_at_10 |
|
value: 8.222999999999999 |
|
- type: precision_at_100 |
|
value: 1.332 |
|
- type: precision_at_1000 |
|
value: 0.183 |
|
- type: precision_at_3 |
|
value: 19.575 |
|
- type: precision_at_5 |
|
value: 13.58 |
|
- type: recall_at_1 |
|
value: 27.849 |
|
- type: recall_at_10 |
|
value: 53.635 |
|
- type: recall_at_100 |
|
value: 73.932 |
|
- type: recall_at_1000 |
|
value: 87.29599999999999 |
|
- type: recall_at_3 |
|
value: 42.019 |
|
- type: recall_at_5 |
|
value: 46.58 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: 4885aa143210c98657558c04aaf3dc47cfb54340 |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.182999999999996 |
|
- type: map_at_10 |
|
value: 41.233 |
|
- type: map_at_100 |
|
value: 42.52 |
|
- type: map_at_1000 |
|
value: 42.589 |
|
- type: map_at_3 |
|
value: 37.284 |
|
- type: map_at_5 |
|
value: 39.586 |
|
- type: mrr_at_1 |
|
value: 33.793 |
|
- type: mrr_at_10 |
|
value: 44.572 |
|
- type: mrr_at_100 |
|
value: 45.456 |
|
- type: mrr_at_1000 |
|
value: 45.497 |
|
- type: mrr_at_3 |
|
value: 41.275 |
|
- type: mrr_at_5 |
|
value: 43.278 |
|
- type: ndcg_at_1 |
|
value: 33.793 |
|
- type: ndcg_at_10 |
|
value: 47.823 |
|
- type: ndcg_at_100 |
|
value: 52.994 |
|
- type: ndcg_at_1000 |
|
value: 54.400000000000006 |
|
- type: ndcg_at_3 |
|
value: 40.82 |
|
- type: ndcg_at_5 |
|
value: 44.426 |
|
- type: precision_at_1 |
|
value: 33.793 |
|
- type: precision_at_10 |
|
value: 8.312999999999999 |
|
- type: precision_at_100 |
|
value: 1.191 |
|
- type: precision_at_1000 |
|
value: 0.136 |
|
- type: precision_at_3 |
|
value: 18.662 |
|
- type: precision_at_5 |
|
value: 13.668 |
|
- type: recall_at_1 |
|
value: 29.182999999999996 |
|
- type: recall_at_10 |
|
value: 64.14999999999999 |
|
- type: recall_at_100 |
|
value: 86.533 |
|
- type: recall_at_1000 |
|
value: 96.492 |
|
- type: recall_at_3 |
|
value: 45.7 |
|
- type: recall_at_5 |
|
value: 54.330999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: 5003b3064772da1887988e05400cf3806fe491f2 |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.389 |
|
- type: map_at_10 |
|
value: 33.858 |
|
- type: map_at_100 |
|
value: 35.081 |
|
- type: map_at_1000 |
|
value: 35.161 |
|
- type: map_at_3 |
|
value: 30.793 |
|
- type: map_at_5 |
|
value: 32.336 |
|
- type: mrr_at_1 |
|
value: 27.006000000000004 |
|
- type: mrr_at_10 |
|
value: 36.378 |
|
- type: mrr_at_100 |
|
value: 37.345 |
|
- type: mrr_at_1000 |
|
value: 37.405 |
|
- type: mrr_at_3 |
|
value: 33.578 |
|
- type: mrr_at_5 |
|
value: 34.991 |
|
- type: ndcg_at_1 |
|
value: 27.006000000000004 |
|
- type: ndcg_at_10 |
|
value: 39.612 |
|
- type: ndcg_at_100 |
|
value: 45.216 |
|
- type: ndcg_at_1000 |
|
value: 47.12 |
|
- type: ndcg_at_3 |
|
value: 33.566 |
|
- type: ndcg_at_5 |
|
value: 36.105 |
|
- type: precision_at_1 |
|
value: 27.006000000000004 |
|
- type: precision_at_10 |
|
value: 6.372999999999999 |
|
- type: precision_at_100 |
|
value: 0.968 |
|
- type: precision_at_1000 |
|
value: 0.11800000000000001 |
|
- type: precision_at_3 |
|
value: 14.501 |
|
- type: precision_at_5 |
|
value: 10.169 |
|
- type: recall_at_1 |
|
value: 24.389 |
|
- type: recall_at_10 |
|
value: 55.131 |
|
- type: recall_at_100 |
|
value: 80.315 |
|
- type: recall_at_1000 |
|
value: 94.284 |
|
- type: recall_at_3 |
|
value: 38.643 |
|
- type: recall_at_5 |
|
value: 44.725 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: 90fceea13679c63fe563ded68f3b6f06e50061de |
|
metrics: |
|
- type: map_at_1 |
|
value: 15.845999999999998 |
|
- type: map_at_10 |
|
value: 25.019000000000002 |
|
- type: map_at_100 |
|
value: 26.478 |
|
- type: map_at_1000 |
|
value: 26.598 |
|
- type: map_at_3 |
|
value: 21.595 |
|
- type: map_at_5 |
|
value: 23.335 |
|
- type: mrr_at_1 |
|
value: 20.274 |
|
- type: mrr_at_10 |
|
value: 29.221000000000004 |
|
- type: mrr_at_100 |
|
value: 30.354999999999997 |
|
- type: mrr_at_1000 |
|
value: 30.419 |
|
- type: mrr_at_3 |
|
value: 26.161 |
|
- type: mrr_at_5 |
|
value: 27.61 |
|
- type: ndcg_at_1 |
|
value: 20.274 |
|
- type: ndcg_at_10 |
|
value: 31.014000000000003 |
|
- type: ndcg_at_100 |
|
value: 37.699 |
|
- type: ndcg_at_1000 |
|
value: 40.363 |
|
- type: ndcg_at_3 |
|
value: 24.701999999999998 |
|
- type: ndcg_at_5 |
|
value: 27.261999999999997 |
|
- type: precision_at_1 |
|
value: 20.274 |
|
- type: precision_at_10 |
|
value: 6.219 |
|
- type: precision_at_100 |
|
value: 1.101 |
|
- type: precision_at_1000 |
|
value: 0.146 |
|
- type: precision_at_3 |
|
value: 12.231 |
|
- type: precision_at_5 |
|
value: 9.129 |
|
- type: recall_at_1 |
|
value: 15.845999999999998 |
|
- type: recall_at_10 |
|
value: 45.358 |
|
- type: recall_at_100 |
|
value: 74.232 |
|
- type: recall_at_1000 |
|
value: 92.985 |
|
- type: recall_at_3 |
|
value: 28.050000000000004 |
|
- type: recall_at_5 |
|
value: 34.588 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 33.808 |
|
- type: map_at_10 |
|
value: 46.86 |
|
- type: map_at_100 |
|
value: 48.237 |
|
- type: map_at_1000 |
|
value: 48.331 |
|
- type: map_at_3 |
|
value: 42.784 |
|
- type: map_at_5 |
|
value: 45.015 |
|
- type: mrr_at_1 |
|
value: 41.771 |
|
- type: mrr_at_10 |
|
value: 52.35300000000001 |
|
- type: mrr_at_100 |
|
value: 53.102000000000004 |
|
- type: mrr_at_1000 |
|
value: 53.132999999999996 |
|
- type: mrr_at_3 |
|
value: 49.663000000000004 |
|
- type: mrr_at_5 |
|
value: 51.27 |
|
- type: ndcg_at_1 |
|
value: 41.771 |
|
- type: ndcg_at_10 |
|
value: 53.562 |
|
- type: ndcg_at_100 |
|
value: 58.809999999999995 |
|
- type: ndcg_at_1000 |
|
value: 60.23 |
|
- type: ndcg_at_3 |
|
value: 47.514 |
|
- type: ndcg_at_5 |
|
value: 50.358999999999995 |
|
- type: precision_at_1 |
|
value: 41.771 |
|
- type: precision_at_10 |
|
value: 10.038 |
|
- type: precision_at_100 |
|
value: 1.473 |
|
- type: precision_at_1000 |
|
value: 0.17600000000000002 |
|
- type: precision_at_3 |
|
value: 22.875 |
|
- type: precision_at_5 |
|
value: 16.477 |
|
- type: recall_at_1 |
|
value: 33.808 |
|
- type: recall_at_10 |
|
value: 67.721 |
|
- type: recall_at_100 |
|
value: 89.261 |
|
- type: recall_at_1000 |
|
value: 98.042 |
|
- type: recall_at_3 |
|
value: 50.807 |
|
- type: recall_at_5 |
|
value: 58.162000000000006 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.105000000000004 |
|
- type: map_at_10 |
|
value: 40.354 |
|
- type: map_at_100 |
|
value: 41.921 |
|
- type: map_at_1000 |
|
value: 42.021 |
|
- type: map_at_3 |
|
value: 36.532 |
|
- type: map_at_5 |
|
value: 38.671 |
|
- type: mrr_at_1 |
|
value: 34.475 |
|
- type: mrr_at_10 |
|
value: 45.342 |
|
- type: mrr_at_100 |
|
value: 46.300000000000004 |
|
- type: mrr_at_1000 |
|
value: 46.343 |
|
- type: mrr_at_3 |
|
value: 42.637 |
|
- type: mrr_at_5 |
|
value: 44.207 |
|
- type: ndcg_at_1 |
|
value: 34.475 |
|
- type: ndcg_at_10 |
|
value: 46.945 |
|
- type: ndcg_at_100 |
|
value: 52.939 |
|
- type: ndcg_at_1000 |
|
value: 54.645999999999994 |
|
- type: ndcg_at_3 |
|
value: 41.065000000000005 |
|
- type: ndcg_at_5 |
|
value: 43.832 |
|
- type: precision_at_1 |
|
value: 34.475 |
|
- type: precision_at_10 |
|
value: 8.892999999999999 |
|
- type: precision_at_100 |
|
value: 1.377 |
|
- type: precision_at_1000 |
|
value: 0.17099999999999999 |
|
- type: precision_at_3 |
|
value: 20.091 |
|
- type: precision_at_5 |
|
value: 14.452000000000002 |
|
- type: recall_at_1 |
|
value: 28.105000000000004 |
|
- type: recall_at_10 |
|
value: 61.253 |
|
- type: recall_at_100 |
|
value: 85.92 |
|
- type: recall_at_1000 |
|
value: 96.799 |
|
- type: recall_at_3 |
|
value: 45.094 |
|
- type: recall_at_5 |
|
value: 52.455 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.613833333333332 |
|
- type: map_at_10 |
|
value: 34.763 |
|
- type: map_at_100 |
|
value: 36.17066666666667 |
|
- type: map_at_1000 |
|
value: 36.2905 |
|
- type: map_at_3 |
|
value: 31.53541666666666 |
|
- type: map_at_5 |
|
value: 33.29216666666667 |
|
- type: mrr_at_1 |
|
value: 29.48725 |
|
- type: mrr_at_10 |
|
value: 38.92066666666667 |
|
- type: mrr_at_100 |
|
value: 39.88725000000001 |
|
- type: mrr_at_1000 |
|
value: 39.9435 |
|
- type: mrr_at_3 |
|
value: 36.284083333333335 |
|
- type: mrr_at_5 |
|
value: 37.73941666666667 |
|
- type: ndcg_at_1 |
|
value: 29.48725 |
|
- type: ndcg_at_10 |
|
value: 40.635083333333334 |
|
- type: ndcg_at_100 |
|
value: 46.479416666666665 |
|
- type: ndcg_at_1000 |
|
value: 48.63308333333334 |
|
- type: ndcg_at_3 |
|
value: 35.19483333333333 |
|
- type: ndcg_at_5 |
|
value: 37.68016666666667 |
|
- type: precision_at_1 |
|
value: 29.48725 |
|
- type: precision_at_10 |
|
value: 7.406499999999998 |
|
- type: precision_at_100 |
|
value: 1.2225833333333334 |
|
- type: precision_at_1000 |
|
value: 0.16108333333333336 |
|
- type: precision_at_3 |
|
value: 16.53375 |
|
- type: precision_at_5 |
|
value: 11.919416666666665 |
|
- type: recall_at_1 |
|
value: 24.613833333333332 |
|
- type: recall_at_10 |
|
value: 53.91766666666666 |
|
- type: recall_at_100 |
|
value: 79.18 |
|
- type: recall_at_1000 |
|
value: 93.85133333333333 |
|
- type: recall_at_3 |
|
value: 38.866166666666665 |
|
- type: recall_at_5 |
|
value: 45.21275000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.106 |
|
- type: map_at_10 |
|
value: 33.367999999999995 |
|
- type: map_at_100 |
|
value: 34.586 |
|
- type: map_at_1000 |
|
value: 34.681 |
|
- type: map_at_3 |
|
value: 31.022 |
|
- type: map_at_5 |
|
value: 32.548 |
|
- type: mrr_at_1 |
|
value: 28.374 |
|
- type: mrr_at_10 |
|
value: 36.521 |
|
- type: mrr_at_100 |
|
value: 37.55 |
|
- type: mrr_at_1000 |
|
value: 37.614999999999995 |
|
- type: mrr_at_3 |
|
value: 34.509 |
|
- type: mrr_at_5 |
|
value: 35.836 |
|
- type: ndcg_at_1 |
|
value: 28.374 |
|
- type: ndcg_at_10 |
|
value: 37.893 |
|
- type: ndcg_at_100 |
|
value: 43.694 |
|
- type: ndcg_at_1000 |
|
value: 46.001999999999995 |
|
- type: ndcg_at_3 |
|
value: 33.825 |
|
- type: ndcg_at_5 |
|
value: 36.201 |
|
- type: precision_at_1 |
|
value: 28.374 |
|
- type: precision_at_10 |
|
value: 5.966 |
|
- type: precision_at_100 |
|
value: 0.9650000000000001 |
|
- type: precision_at_1000 |
|
value: 0.124 |
|
- type: precision_at_3 |
|
value: 14.774999999999999 |
|
- type: precision_at_5 |
|
value: 10.459999999999999 |
|
- type: recall_at_1 |
|
value: 25.106 |
|
- type: recall_at_10 |
|
value: 48.607 |
|
- type: recall_at_100 |
|
value: 74.66000000000001 |
|
- type: recall_at_1000 |
|
value: 91.562 |
|
- type: recall_at_3 |
|
value: 37.669999999999995 |
|
- type: recall_at_5 |
|
value: 43.484 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: 46989137a86843e03a6195de44b09deda022eec7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 13.755 |
|
- type: map_at_10 |
|
value: 20.756 |
|
- type: map_at_100 |
|
value: 22.05 |
|
- type: map_at_1000 |
|
value: 22.201 |
|
- type: map_at_3 |
|
value: 18.243000000000002 |
|
- type: map_at_5 |
|
value: 19.512 |
|
- type: mrr_at_1 |
|
value: 16.93 |
|
- type: mrr_at_10 |
|
value: 24.276 |
|
- type: mrr_at_100 |
|
value: 25.349 |
|
- type: mrr_at_1000 |
|
value: 25.441000000000003 |
|
- type: mrr_at_3 |
|
value: 21.897 |
|
- type: mrr_at_5 |
|
value: 23.134 |
|
- type: ndcg_at_1 |
|
value: 16.93 |
|
- type: ndcg_at_10 |
|
value: 25.508999999999997 |
|
- type: ndcg_at_100 |
|
value: 31.777 |
|
- type: ndcg_at_1000 |
|
value: 35.112 |
|
- type: ndcg_at_3 |
|
value: 20.896 |
|
- type: ndcg_at_5 |
|
value: 22.857 |
|
- type: precision_at_1 |
|
value: 16.93 |
|
- type: precision_at_10 |
|
value: 4.972 |
|
- type: precision_at_100 |
|
value: 0.963 |
|
- type: precision_at_1000 |
|
value: 0.145 |
|
- type: precision_at_3 |
|
value: 10.14 |
|
- type: precision_at_5 |
|
value: 7.536 |
|
- type: recall_at_1 |
|
value: 13.755 |
|
- type: recall_at_10 |
|
value: 36.46 |
|
- type: recall_at_100 |
|
value: 64.786 |
|
- type: recall_at_1000 |
|
value: 88.287 |
|
- type: recall_at_3 |
|
value: 23.681 |
|
- type: recall_at_5 |
|
value: 28.615000000000002 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.99 |
|
- type: map_at_10 |
|
value: 38.009 |
|
- type: map_at_100 |
|
value: 39.384 |
|
- type: map_at_1000 |
|
value: 39.481 |
|
- type: map_at_3 |
|
value: 34.593 |
|
- type: map_at_5 |
|
value: 36.449999999999996 |
|
- type: mrr_at_1 |
|
value: 31.81 |
|
- type: mrr_at_10 |
|
value: 41.943000000000005 |
|
- type: mrr_at_100 |
|
value: 42.914 |
|
- type: mrr_at_1000 |
|
value: 42.962 |
|
- type: mrr_at_3 |
|
value: 39.179 |
|
- type: mrr_at_5 |
|
value: 40.798 |
|
- type: ndcg_at_1 |
|
value: 31.81 |
|
- type: ndcg_at_10 |
|
value: 44.086 |
|
- type: ndcg_at_100 |
|
value: 50.026 |
|
- type: ndcg_at_1000 |
|
value: 51.903999999999996 |
|
- type: ndcg_at_3 |
|
value: 38.23 |
|
- type: ndcg_at_5 |
|
value: 40.926 |
|
- type: precision_at_1 |
|
value: 31.81 |
|
- type: precision_at_10 |
|
value: 7.761 |
|
- type: precision_at_100 |
|
value: 1.205 |
|
- type: precision_at_1000 |
|
value: 0.148 |
|
- type: precision_at_3 |
|
value: 17.537 |
|
- type: precision_at_5 |
|
value: 12.649 |
|
- type: recall_at_1 |
|
value: 26.99 |
|
- type: recall_at_10 |
|
value: 58.467 |
|
- type: recall_at_100 |
|
value: 83.93 |
|
- type: recall_at_1000 |
|
value: 96.452 |
|
- type: recall_at_3 |
|
value: 42.685 |
|
- type: recall_at_5 |
|
value: 49.341 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: 160c094312a0e1facb97e55eeddb698c0abe3571 |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.312 |
|
- type: map_at_10 |
|
value: 35.788 |
|
- type: map_at_100 |
|
value: 37.616 |
|
- type: map_at_1000 |
|
value: 37.86 |
|
- type: map_at_3 |
|
value: 32.422000000000004 |
|
- type: map_at_5 |
|
value: 34.585 |
|
- type: mrr_at_1 |
|
value: 30.631999999999998 |
|
- type: mrr_at_10 |
|
value: 40.604 |
|
- type: mrr_at_100 |
|
value: 41.745 |
|
- type: mrr_at_1000 |
|
value: 41.788 |
|
- type: mrr_at_3 |
|
value: 37.582 |
|
- type: mrr_at_5 |
|
value: 39.499 |
|
- type: ndcg_at_1 |
|
value: 30.631999999999998 |
|
- type: ndcg_at_10 |
|
value: 42.129 |
|
- type: ndcg_at_100 |
|
value: 48.943 |
|
- type: ndcg_at_1000 |
|
value: 51.089 |
|
- type: ndcg_at_3 |
|
value: 36.658 |
|
- type: ndcg_at_5 |
|
value: 39.818999999999996 |
|
- type: precision_at_1 |
|
value: 30.631999999999998 |
|
- type: precision_at_10 |
|
value: 7.904999999999999 |
|
- type: precision_at_100 |
|
value: 1.664 |
|
- type: precision_at_1000 |
|
value: 0.256 |
|
- type: precision_at_3 |
|
value: 16.996 |
|
- type: precision_at_5 |
|
value: 12.727 |
|
- type: recall_at_1 |
|
value: 25.312 |
|
- type: recall_at_10 |
|
value: 54.886 |
|
- type: recall_at_100 |
|
value: 84.155 |
|
- type: recall_at_1000 |
|
value: 96.956 |
|
- type: recall_at_3 |
|
value: 40.232 |
|
- type: recall_at_5 |
|
value: 48.204 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 12.328999999999999 |
|
- type: map_at_10 |
|
value: 20.078 |
|
- type: map_at_100 |
|
value: 21.166999999999998 |
|
- type: map_at_1000 |
|
value: 21.308 |
|
- type: map_at_3 |
|
value: 17.702 |
|
- type: map_at_5 |
|
value: 18.725 |
|
- type: mrr_at_1 |
|
value: 13.678 |
|
- type: mrr_at_10 |
|
value: 21.859 |
|
- type: mrr_at_100 |
|
value: 22.816 |
|
- type: mrr_at_1000 |
|
value: 22.926 |
|
- type: mrr_at_3 |
|
value: 19.378 |
|
- type: mrr_at_5 |
|
value: 20.385 |
|
- type: ndcg_at_1 |
|
value: 13.678 |
|
- type: ndcg_at_10 |
|
value: 24.993000000000002 |
|
- type: ndcg_at_100 |
|
value: 30.464999999999996 |
|
- type: ndcg_at_1000 |
|
value: 33.916000000000004 |
|
- type: ndcg_at_3 |
|
value: 19.966 |
|
- type: ndcg_at_5 |
|
value: 21.712999999999997 |
|
- type: precision_at_1 |
|
value: 13.678 |
|
- type: precision_at_10 |
|
value: 4.473 |
|
- type: precision_at_100 |
|
value: 0.784 |
|
- type: precision_at_1000 |
|
value: 0.116 |
|
- type: precision_at_3 |
|
value: 9.181000000000001 |
|
- type: precision_at_5 |
|
value: 6.506 |
|
- type: recall_at_1 |
|
value: 12.328999999999999 |
|
- type: recall_at_10 |
|
value: 38.592 |
|
- type: recall_at_100 |
|
value: 63.817 |
|
- type: recall_at_1000 |
|
value: 89.67500000000001 |
|
- type: recall_at_3 |
|
value: 24.726 |
|
- type: recall_at_5 |
|
value: 28.959000000000003 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.147 |
|
- type: map_at_10 |
|
value: 33.509 |
|
- type: map_at_100 |
|
value: 35.573 |
|
- type: map_at_1000 |
|
value: 35.769 |
|
- type: map_at_3 |
|
value: 27.983999999999998 |
|
- type: map_at_5 |
|
value: 31.012 |
|
- type: mrr_at_1 |
|
value: 43.844 |
|
- type: mrr_at_10 |
|
value: 56.24 |
|
- type: mrr_at_100 |
|
value: 56.801 |
|
- type: mrr_at_1000 |
|
value: 56.826 |
|
- type: mrr_at_3 |
|
value: 53.290000000000006 |
|
- type: mrr_at_5 |
|
value: 55.13 |
|
- type: ndcg_at_1 |
|
value: 43.844 |
|
- type: ndcg_at_10 |
|
value: 43.996 |
|
- type: ndcg_at_100 |
|
value: 50.965 |
|
- type: ndcg_at_1000 |
|
value: 53.927 |
|
- type: ndcg_at_3 |
|
value: 37.263000000000005 |
|
- type: ndcg_at_5 |
|
value: 39.553 |
|
- type: precision_at_1 |
|
value: 43.844 |
|
- type: precision_at_10 |
|
value: 13.687 |
|
- type: precision_at_100 |
|
value: 2.139 |
|
- type: precision_at_1000 |
|
value: 0.269 |
|
- type: precision_at_3 |
|
value: 28.122000000000003 |
|
- type: precision_at_5 |
|
value: 21.303 |
|
- type: recall_at_1 |
|
value: 19.147 |
|
- type: recall_at_10 |
|
value: 50.449999999999996 |
|
- type: recall_at_100 |
|
value: 74.00099999999999 |
|
- type: recall_at_1000 |
|
value: 90.098 |
|
- type: recall_at_3 |
|
value: 33.343 |
|
- type: recall_at_5 |
|
value: 40.744 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/dbpedia |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 |
|
metrics: |
|
- type: map_at_1 |
|
value: 8.773 |
|
- type: map_at_10 |
|
value: 21.172 |
|
- type: map_at_100 |
|
value: 30.244 |
|
- type: map_at_1000 |
|
value: 32.127 |
|
- type: map_at_3 |
|
value: 14.510000000000002 |
|
- type: map_at_5 |
|
value: 17.483 |
|
- type: mrr_at_1 |
|
value: 68.25 |
|
- type: mrr_at_10 |
|
value: 77.33 |
|
- type: mrr_at_100 |
|
value: 77.529 |
|
- type: mrr_at_1000 |
|
value: 77.536 |
|
- type: mrr_at_3 |
|
value: 75.708 |
|
- type: mrr_at_5 |
|
value: 76.72099999999999 |
|
- type: ndcg_at_1 |
|
value: 60.0 |
|
- type: ndcg_at_10 |
|
value: 48.045 |
|
- type: ndcg_at_100 |
|
value: 51.620999999999995 |
|
- type: ndcg_at_1000 |
|
value: 58.843999999999994 |
|
- type: ndcg_at_3 |
|
value: 52.922000000000004 |
|
- type: ndcg_at_5 |
|
value: 50.27 |
|
- type: precision_at_1 |
|
value: 68.25 |
|
- type: precision_at_10 |
|
value: 37.625 |
|
- type: precision_at_100 |
|
value: 11.774999999999999 |
|
- type: precision_at_1000 |
|
value: 2.395 |
|
- type: precision_at_3 |
|
value: 55.25 |
|
- type: precision_at_5 |
|
value: 47.599999999999994 |
|
- type: recall_at_1 |
|
value: 8.773 |
|
- type: recall_at_10 |
|
value: 27.332 |
|
- type: recall_at_100 |
|
value: 55.48499999999999 |
|
- type: recall_at_1000 |
|
value: 79.886 |
|
- type: recall_at_3 |
|
value: 15.823 |
|
- type: recall_at_5 |
|
value: 20.523 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 54.52999999999999 |
|
- type: f1 |
|
value: 47.396628088963645 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 |
|
metrics: |
|
- type: map_at_1 |
|
value: 85.397 |
|
- type: map_at_10 |
|
value: 90.917 |
|
- type: map_at_100 |
|
value: 91.109 |
|
- type: map_at_1000 |
|
value: 91.121 |
|
- type: map_at_3 |
|
value: 90.045 |
|
- type: map_at_5 |
|
value: 90.602 |
|
- type: mrr_at_1 |
|
value: 92.00399999999999 |
|
- type: mrr_at_10 |
|
value: 95.39999999999999 |
|
- type: mrr_at_100 |
|
value: 95.41 |
|
- type: mrr_at_1000 |
|
value: 95.41 |
|
- type: mrr_at_3 |
|
value: 95.165 |
|
- type: mrr_at_5 |
|
value: 95.348 |
|
- type: ndcg_at_1 |
|
value: 92.00399999999999 |
|
- type: ndcg_at_10 |
|
value: 93.345 |
|
- type: ndcg_at_100 |
|
value: 93.934 |
|
- type: ndcg_at_1000 |
|
value: 94.108 |
|
- type: ndcg_at_3 |
|
value: 92.32000000000001 |
|
- type: ndcg_at_5 |
|
value: 92.899 |
|
- type: precision_at_1 |
|
value: 92.00399999999999 |
|
- type: precision_at_10 |
|
value: 10.839 |
|
- type: precision_at_100 |
|
value: 1.1440000000000001 |
|
- type: precision_at_1000 |
|
value: 0.117 |
|
- type: precision_at_3 |
|
value: 34.298 |
|
- type: precision_at_5 |
|
value: 21.128 |
|
- type: recall_at_1 |
|
value: 85.397 |
|
- type: recall_at_10 |
|
value: 96.375 |
|
- type: recall_at_100 |
|
value: 98.518 |
|
- type: recall_at_1000 |
|
value: 99.515 |
|
- type: recall_at_3 |
|
value: 93.59100000000001 |
|
- type: recall_at_5 |
|
value: 95.134 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: 27a168819829fe9bcd655c2df245fb19452e8e06 |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.36 |
|
- type: map_at_10 |
|
value: 46.847 |
|
- type: map_at_100 |
|
value: 49.259 |
|
- type: map_at_1000 |
|
value: 49.389 |
|
- type: map_at_3 |
|
value: 41.095 |
|
- type: map_at_5 |
|
value: 44.084 |
|
- type: mrr_at_1 |
|
value: 51.852 |
|
- type: mrr_at_10 |
|
value: 61.67 |
|
- type: mrr_at_100 |
|
value: 62.395999999999994 |
|
- type: mrr_at_1000 |
|
value: 62.414 |
|
- type: mrr_at_3 |
|
value: 59.465 |
|
- type: mrr_at_5 |
|
value: 60.584 |
|
- type: ndcg_at_1 |
|
value: 51.852 |
|
- type: ndcg_at_10 |
|
value: 55.311 |
|
- type: ndcg_at_100 |
|
value: 62.6 |
|
- type: ndcg_at_1000 |
|
value: 64.206 |
|
- type: ndcg_at_3 |
|
value: 51.159 |
|
- type: ndcg_at_5 |
|
value: 52.038 |
|
- type: precision_at_1 |
|
value: 51.852 |
|
- type: precision_at_10 |
|
value: 15.370000000000001 |
|
- type: precision_at_100 |
|
value: 2.282 |
|
- type: precision_at_1000 |
|
value: 0.258 |
|
- type: precision_at_3 |
|
value: 34.721999999999994 |
|
- type: precision_at_5 |
|
value: 24.846 |
|
- type: recall_at_1 |
|
value: 27.36 |
|
- type: recall_at_10 |
|
value: 63.932 |
|
- type: recall_at_100 |
|
value: 89.824 |
|
- type: recall_at_1000 |
|
value: 98.556 |
|
- type: recall_at_3 |
|
value: 47.227999999999994 |
|
- type: recall_at_5 |
|
value: 53.724000000000004 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: ab518f4d6fcca38d87c25209f94beba119d02014 |
|
metrics: |
|
- type: map_at_1 |
|
value: 40.655 |
|
- type: map_at_10 |
|
value: 63.824999999999996 |
|
- type: map_at_100 |
|
value: 64.793 |
|
- type: map_at_1000 |
|
value: 64.848 |
|
- type: map_at_3 |
|
value: 60.221000000000004 |
|
- type: map_at_5 |
|
value: 62.474 |
|
- type: mrr_at_1 |
|
value: 81.31 |
|
- type: mrr_at_10 |
|
value: 86.509 |
|
- type: mrr_at_100 |
|
value: 86.677 |
|
- type: mrr_at_1000 |
|
value: 86.682 |
|
- type: mrr_at_3 |
|
value: 85.717 |
|
- type: mrr_at_5 |
|
value: 86.21 |
|
- type: ndcg_at_1 |
|
value: 81.31 |
|
- type: ndcg_at_10 |
|
value: 72.251 |
|
- type: ndcg_at_100 |
|
value: 75.536 |
|
- type: ndcg_at_1000 |
|
value: 76.558 |
|
- type: ndcg_at_3 |
|
value: 67.291 |
|
- type: ndcg_at_5 |
|
value: 70.045 |
|
- type: precision_at_1 |
|
value: 81.31 |
|
- type: precision_at_10 |
|
value: 15.082999999999998 |
|
- type: precision_at_100 |
|
value: 1.764 |
|
- type: precision_at_1000 |
|
value: 0.19 |
|
- type: precision_at_3 |
|
value: 42.971 |
|
- type: precision_at_5 |
|
value: 27.956999999999997 |
|
- type: recall_at_1 |
|
value: 40.655 |
|
- type: recall_at_10 |
|
value: 75.41499999999999 |
|
- type: recall_at_100 |
|
value: 88.224 |
|
- type: recall_at_1000 |
|
value: 94.943 |
|
- type: recall_at_3 |
|
value: 64.456 |
|
- type: recall_at_5 |
|
value: 69.892 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 95.58120000000001 |
|
- type: ap |
|
value: 93.0407063004784 |
|
- type: f1 |
|
value: 95.57849992996822 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: c5a29a104738b98a9e76336939199e264163d4a0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.031 |
|
- type: map_at_10 |
|
value: 34.628 |
|
- type: map_at_100 |
|
value: 35.833 |
|
- type: map_at_1000 |
|
value: 35.881 |
|
- type: map_at_3 |
|
value: 30.619000000000003 |
|
- type: map_at_5 |
|
value: 32.982 |
|
- type: mrr_at_1 |
|
value: 22.736 |
|
- type: mrr_at_10 |
|
value: 35.24 |
|
- type: mrr_at_100 |
|
value: 36.381 |
|
- type: mrr_at_1000 |
|
value: 36.424 |
|
- type: mrr_at_3 |
|
value: 31.287 |
|
- type: mrr_at_5 |
|
value: 33.617000000000004 |
|
- type: ndcg_at_1 |
|
value: 22.736 |
|
- type: ndcg_at_10 |
|
value: 41.681000000000004 |
|
- type: ndcg_at_100 |
|
value: 47.371 |
|
- type: ndcg_at_1000 |
|
value: 48.555 |
|
- type: ndcg_at_3 |
|
value: 33.553 |
|
- type: ndcg_at_5 |
|
value: 37.771 |
|
- type: precision_at_1 |
|
value: 22.736 |
|
- type: precision_at_10 |
|
value: 6.625 |
|
- type: precision_at_100 |
|
value: 0.9450000000000001 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: precision_at_3 |
|
value: 14.331 |
|
- type: precision_at_5 |
|
value: 10.734 |
|
- type: recall_at_1 |
|
value: 22.031 |
|
- type: recall_at_10 |
|
value: 63.378 |
|
- type: recall_at_100 |
|
value: 89.47699999999999 |
|
- type: recall_at_1000 |
|
value: 98.48400000000001 |
|
- type: recall_at_3 |
|
value: 41.388000000000005 |
|
- type: recall_at_5 |
|
value: 51.522999999999996 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 95.75239398084815 |
|
- type: f1 |
|
value: 95.51228043205194 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 84.25900592795259 |
|
- type: f1 |
|
value: 62.14790420114562 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 78.47007397444519 |
|
- type: f1 |
|
value: 76.92133583932912 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 78.19098856758575 |
|
- type: f1 |
|
value: 78.10820805879119 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 44.37013684222983 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 42.003012591979704 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 32.70743071063257 |
|
- type: mrr |
|
value: 33.938337390083994 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.369 |
|
- type: map_at_10 |
|
value: 14.313 |
|
- type: map_at_100 |
|
value: 18.329 |
|
- type: map_at_1000 |
|
value: 20.017 |
|
- type: map_at_3 |
|
value: 10.257 |
|
- type: map_at_5 |
|
value: 12.264999999999999 |
|
- type: mrr_at_1 |
|
value: 49.536 |
|
- type: mrr_at_10 |
|
value: 58.464000000000006 |
|
- type: mrr_at_100 |
|
value: 59.016000000000005 |
|
- type: mrr_at_1000 |
|
value: 59.053 |
|
- type: mrr_at_3 |
|
value: 56.294999999999995 |
|
- type: mrr_at_5 |
|
value: 57.766 |
|
- type: ndcg_at_1 |
|
value: 47.678 |
|
- type: ndcg_at_10 |
|
value: 38.246 |
|
- type: ndcg_at_100 |
|
value: 35.370000000000005 |
|
- type: ndcg_at_1000 |
|
value: 44.517 |
|
- type: ndcg_at_3 |
|
value: 43.368 |
|
- type: ndcg_at_5 |
|
value: 41.892 |
|
- type: precision_at_1 |
|
value: 49.536 |
|
- type: precision_at_10 |
|
value: 28.235 |
|
- type: precision_at_100 |
|
value: 9.014999999999999 |
|
- type: precision_at_1000 |
|
value: 2.257 |
|
- type: precision_at_3 |
|
value: 40.557 |
|
- type: precision_at_5 |
|
value: 36.409000000000006 |
|
- type: recall_at_1 |
|
value: 6.369 |
|
- type: recall_at_10 |
|
value: 19.195999999999998 |
|
- type: recall_at_100 |
|
value: 37.042 |
|
- type: recall_at_1000 |
|
value: 69.203 |
|
- type: recall_at_3 |
|
value: 11.564 |
|
- type: recall_at_5 |
|
value: 15.264 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 |
|
metrics: |
|
- type: map_at_1 |
|
value: 39.323 |
|
- type: map_at_10 |
|
value: 54.608999999999995 |
|
- type: map_at_100 |
|
value: 55.523 |
|
- type: map_at_1000 |
|
value: 55.544000000000004 |
|
- type: map_at_3 |
|
value: 50.580000000000005 |
|
- type: map_at_5 |
|
value: 53.064 |
|
- type: mrr_at_1 |
|
value: 44.263999999999996 |
|
- type: mrr_at_10 |
|
value: 57.416 |
|
- type: mrr_at_100 |
|
value: 58.037000000000006 |
|
- type: mrr_at_1000 |
|
value: 58.05200000000001 |
|
- type: mrr_at_3 |
|
value: 54.330999999999996 |
|
- type: mrr_at_5 |
|
value: 56.302 |
|
- type: ndcg_at_1 |
|
value: 44.263999999999996 |
|
- type: ndcg_at_10 |
|
value: 61.785999999999994 |
|
- type: ndcg_at_100 |
|
value: 65.40599999999999 |
|
- type: ndcg_at_1000 |
|
value: 65.859 |
|
- type: ndcg_at_3 |
|
value: 54.518 |
|
- type: ndcg_at_5 |
|
value: 58.53699999999999 |
|
- type: precision_at_1 |
|
value: 44.263999999999996 |
|
- type: precision_at_10 |
|
value: 9.652 |
|
- type: precision_at_100 |
|
value: 1.169 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 24.15 |
|
- type: precision_at_5 |
|
value: 16.848 |
|
- type: recall_at_1 |
|
value: 39.323 |
|
- type: recall_at_10 |
|
value: 80.663 |
|
- type: recall_at_100 |
|
value: 96.072 |
|
- type: recall_at_1000 |
|
value: 99.37700000000001 |
|
- type: recall_at_3 |
|
value: 62.23 |
|
- type: recall_at_5 |
|
value: 71.379 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 72.02499999999999 |
|
- type: map_at_10 |
|
value: 86.14500000000001 |
|
- type: map_at_100 |
|
value: 86.764 |
|
- type: map_at_1000 |
|
value: 86.776 |
|
- type: map_at_3 |
|
value: 83.249 |
|
- type: map_at_5 |
|
value: 85.083 |
|
- type: mrr_at_1 |
|
value: 82.83 |
|
- type: mrr_at_10 |
|
value: 88.70599999999999 |
|
- type: mrr_at_100 |
|
value: 88.791 |
|
- type: mrr_at_1000 |
|
value: 88.791 |
|
- type: mrr_at_3 |
|
value: 87.815 |
|
- type: mrr_at_5 |
|
value: 88.435 |
|
- type: ndcg_at_1 |
|
value: 82.84 |
|
- type: ndcg_at_10 |
|
value: 89.61200000000001 |
|
- type: ndcg_at_100 |
|
value: 90.693 |
|
- type: ndcg_at_1000 |
|
value: 90.752 |
|
- type: ndcg_at_3 |
|
value: 86.96199999999999 |
|
- type: ndcg_at_5 |
|
value: 88.454 |
|
- type: precision_at_1 |
|
value: 82.84 |
|
- type: precision_at_10 |
|
value: 13.600000000000001 |
|
- type: precision_at_100 |
|
value: 1.543 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 38.092999999999996 |
|
- type: precision_at_5 |
|
value: 25.024 |
|
- type: recall_at_1 |
|
value: 72.02499999999999 |
|
- type: recall_at_10 |
|
value: 96.21600000000001 |
|
- type: recall_at_100 |
|
value: 99.76 |
|
- type: recall_at_1000 |
|
value: 99.996 |
|
- type: recall_at_3 |
|
value: 88.57000000000001 |
|
- type: recall_at_5 |
|
value: 92.814 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 73.37297191949929 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 72.50752304246946 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.4479999999999995 |
|
- type: map_at_10 |
|
value: 17.268 |
|
- type: map_at_100 |
|
value: 20.502000000000002 |
|
- type: map_at_1000 |
|
value: 20.904 |
|
- type: map_at_3 |
|
value: 11.951 |
|
- type: map_at_5 |
|
value: 14.494000000000002 |
|
- type: mrr_at_1 |
|
value: 31.900000000000002 |
|
- type: mrr_at_10 |
|
value: 45.084999999999994 |
|
- type: mrr_at_100 |
|
value: 46.145 |
|
- type: mrr_at_1000 |
|
value: 46.164 |
|
- type: mrr_at_3 |
|
value: 41.6 |
|
- type: mrr_at_5 |
|
value: 43.76 |
|
- type: ndcg_at_1 |
|
value: 31.900000000000002 |
|
- type: ndcg_at_10 |
|
value: 27.694000000000003 |
|
- type: ndcg_at_100 |
|
value: 39.016 |
|
- type: ndcg_at_1000 |
|
value: 44.448 |
|
- type: ndcg_at_3 |
|
value: 26.279999999999998 |
|
- type: ndcg_at_5 |
|
value: 22.93 |
|
- type: precision_at_1 |
|
value: 31.900000000000002 |
|
- type: precision_at_10 |
|
value: 14.399999999999999 |
|
- type: precision_at_100 |
|
value: 3.082 |
|
- type: precision_at_1000 |
|
value: 0.436 |
|
- type: precision_at_3 |
|
value: 24.667 |
|
- type: precision_at_5 |
|
value: 20.200000000000003 |
|
- type: recall_at_1 |
|
value: 6.4479999999999995 |
|
- type: recall_at_10 |
|
value: 29.243000000000002 |
|
- type: recall_at_100 |
|
value: 62.547 |
|
- type: recall_at_1000 |
|
value: 88.40299999999999 |
|
- type: recall_at_3 |
|
value: 14.988000000000001 |
|
- type: recall_at_5 |
|
value: 20.485 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.37839336866843 |
|
- type: cos_sim_spearman |
|
value: 79.14737320486729 |
|
- type: euclidean_pearson |
|
value: 78.74010870392799 |
|
- type: euclidean_spearman |
|
value: 79.1472505448557 |
|
- type: manhattan_pearson |
|
value: 78.76735626972086 |
|
- type: manhattan_spearman |
|
value: 79.18509055331465 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.98947740740309 |
|
- type: cos_sim_spearman |
|
value: 76.52068694652895 |
|
- type: euclidean_pearson |
|
value: 81.10952542010847 |
|
- type: euclidean_spearman |
|
value: 76.52162808897668 |
|
- type: manhattan_pearson |
|
value: 81.13752577872523 |
|
- type: manhattan_spearman |
|
value: 76.55073892851847 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.14795728641734 |
|
- type: cos_sim_spearman |
|
value: 88.62720469210905 |
|
- type: euclidean_pearson |
|
value: 87.96160445129142 |
|
- type: euclidean_spearman |
|
value: 88.62615925428736 |
|
- type: manhattan_pearson |
|
value: 87.86760858379527 |
|
- type: manhattan_spearman |
|
value: 88.5613166629411 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.06444249948838 |
|
- type: cos_sim_spearman |
|
value: 83.32346434965837 |
|
- type: euclidean_pearson |
|
value: 83.86264166785146 |
|
- type: euclidean_spearman |
|
value: 83.32323156068114 |
|
- type: manhattan_pearson |
|
value: 83.87253909108084 |
|
- type: manhattan_spearman |
|
value: 83.42760090819642 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.00847937091636 |
|
- type: cos_sim_spearman |
|
value: 87.50432670473445 |
|
- type: euclidean_pearson |
|
value: 87.21611485565168 |
|
- type: euclidean_spearman |
|
value: 87.50387351928698 |
|
- type: manhattan_pearson |
|
value: 87.30690660623411 |
|
- type: manhattan_spearman |
|
value: 87.61147161393255 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.51456553517488 |
|
- type: cos_sim_spearman |
|
value: 86.39208323626035 |
|
- type: euclidean_pearson |
|
value: 85.74698473006475 |
|
- type: euclidean_spearman |
|
value: 86.3892506146807 |
|
- type: manhattan_pearson |
|
value: 85.77493611949014 |
|
- type: manhattan_spearman |
|
value: 86.42961510735024 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.63402051628222 |
|
- type: cos_sim_spearman |
|
value: 87.78994504115502 |
|
- type: euclidean_pearson |
|
value: 88.44861926968403 |
|
- type: euclidean_spearman |
|
value: 87.80670473078185 |
|
- type: manhattan_pearson |
|
value: 88.4773722010208 |
|
- type: manhattan_spearman |
|
value: 87.85175600656768 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 65.9659729672951 |
|
- type: cos_sim_spearman |
|
value: 66.39891735341361 |
|
- type: euclidean_pearson |
|
value: 68.040150710449 |
|
- type: euclidean_spearman |
|
value: 66.41777234484414 |
|
- type: manhattan_pearson |
|
value: 68.16264809387305 |
|
- type: manhattan_spearman |
|
value: 66.31608161700346 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.91024857159385 |
|
- type: cos_sim_spearman |
|
value: 87.35031011815016 |
|
- type: euclidean_pearson |
|
value: 86.94569462996033 |
|
- type: euclidean_spearman |
|
value: 87.34929703462852 |
|
- type: manhattan_pearson |
|
value: 86.94404111225616 |
|
- type: manhattan_spearman |
|
value: 87.37827218003393 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 87.89077927002596 |
|
- type: mrr |
|
value: 96.94650937297997 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: 0228b52cf27578f30900b9e5271d331663a030d7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 57.994 |
|
- type: map_at_10 |
|
value: 70.07100000000001 |
|
- type: map_at_100 |
|
value: 70.578 |
|
- type: map_at_1000 |
|
value: 70.588 |
|
- type: map_at_3 |
|
value: 67.228 |
|
- type: map_at_5 |
|
value: 68.695 |
|
- type: mrr_at_1 |
|
value: 61.333000000000006 |
|
- type: mrr_at_10 |
|
value: 71.342 |
|
- type: mrr_at_100 |
|
value: 71.739 |
|
- type: mrr_at_1000 |
|
value: 71.75 |
|
- type: mrr_at_3 |
|
value: 69.389 |
|
- type: mrr_at_5 |
|
value: 70.322 |
|
- type: ndcg_at_1 |
|
value: 61.333000000000006 |
|
- type: ndcg_at_10 |
|
value: 75.312 |
|
- type: ndcg_at_100 |
|
value: 77.312 |
|
- type: ndcg_at_1000 |
|
value: 77.50200000000001 |
|
- type: ndcg_at_3 |
|
value: 70.72 |
|
- type: ndcg_at_5 |
|
value: 72.616 |
|
- type: precision_at_1 |
|
value: 61.333000000000006 |
|
- type: precision_at_10 |
|
value: 10.167 |
|
- type: precision_at_100 |
|
value: 1.117 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 28.111000000000004 |
|
- type: precision_at_5 |
|
value: 18.333 |
|
- type: recall_at_1 |
|
value: 57.994 |
|
- type: recall_at_10 |
|
value: 89.944 |
|
- type: recall_at_100 |
|
value: 98.667 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 77.694 |
|
- type: recall_at_5 |
|
value: 82.339 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.81485148514851 |
|
- type: cos_sim_ap |
|
value: 95.99339654021689 |
|
- type: cos_sim_f1 |
|
value: 90.45971329708354 |
|
- type: cos_sim_precision |
|
value: 89.44281524926686 |
|
- type: cos_sim_recall |
|
value: 91.5 |
|
- type: dot_accuracy |
|
value: 99.81485148514851 |
|
- type: dot_ap |
|
value: 95.990792367539 |
|
- type: dot_f1 |
|
value: 90.54187192118228 |
|
- type: dot_precision |
|
value: 89.2233009708738 |
|
- type: dot_recall |
|
value: 91.9 |
|
- type: euclidean_accuracy |
|
value: 99.81386138613861 |
|
- type: euclidean_ap |
|
value: 95.99403827746491 |
|
- type: euclidean_f1 |
|
value: 90.45971329708354 |
|
- type: euclidean_precision |
|
value: 89.44281524926686 |
|
- type: euclidean_recall |
|
value: 91.5 |
|
- type: manhattan_accuracy |
|
value: 99.81485148514851 |
|
- type: manhattan_ap |
|
value: 96.06741547889861 |
|
- type: manhattan_f1 |
|
value: 90.55666003976144 |
|
- type: manhattan_precision |
|
value: 90.01976284584981 |
|
- type: manhattan_recall |
|
value: 91.10000000000001 |
|
- type: max_accuracy |
|
value: 99.81485148514851 |
|
- type: max_ap |
|
value: 96.06741547889861 |
|
- type: max_f1 |
|
value: 90.55666003976144 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 79.0667992003181 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 49.57086425048946 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 53.929415255105894 |
|
- type: mrr |
|
value: 54.93889790764791 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.050700527286658 |
|
- type: cos_sim_spearman |
|
value: 31.46077656458546 |
|
- type: dot_pearson |
|
value: 31.056448416258263 |
|
- type: dot_spearman |
|
value: 31.435272601921042 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.23500000000000001 |
|
- type: map_at_10 |
|
value: 1.812 |
|
- type: map_at_100 |
|
value: 10.041 |
|
- type: map_at_1000 |
|
value: 24.095 |
|
- type: map_at_3 |
|
value: 0.643 |
|
- type: map_at_5 |
|
value: 1.0 |
|
- type: mrr_at_1 |
|
value: 86.0 |
|
- type: mrr_at_10 |
|
value: 92.0 |
|
- type: mrr_at_100 |
|
value: 92.0 |
|
- type: mrr_at_1000 |
|
value: 92.0 |
|
- type: mrr_at_3 |
|
value: 91.667 |
|
- type: mrr_at_5 |
|
value: 91.667 |
|
- type: ndcg_at_1 |
|
value: 79.0 |
|
- type: ndcg_at_10 |
|
value: 72.72 |
|
- type: ndcg_at_100 |
|
value: 55.82899999999999 |
|
- type: ndcg_at_1000 |
|
value: 50.72 |
|
- type: ndcg_at_3 |
|
value: 77.715 |
|
- type: ndcg_at_5 |
|
value: 75.036 |
|
- type: precision_at_1 |
|
value: 86.0 |
|
- type: precision_at_10 |
|
value: 77.60000000000001 |
|
- type: precision_at_100 |
|
value: 56.46 |
|
- type: precision_at_1000 |
|
value: 22.23 |
|
- type: precision_at_3 |
|
value: 82.667 |
|
- type: precision_at_5 |
|
value: 80.4 |
|
- type: recall_at_1 |
|
value: 0.23500000000000001 |
|
- type: recall_at_10 |
|
value: 2.046 |
|
- type: recall_at_100 |
|
value: 13.708 |
|
- type: recall_at_1000 |
|
value: 47.451 |
|
- type: recall_at_3 |
|
value: 0.6709999999999999 |
|
- type: recall_at_5 |
|
value: 1.078 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f |
|
metrics: |
|
- type: map_at_1 |
|
value: 2.252 |
|
- type: map_at_10 |
|
value: 7.958 |
|
- type: map_at_100 |
|
value: 12.293 |
|
- type: map_at_1000 |
|
value: 13.832 |
|
- type: map_at_3 |
|
value: 4.299 |
|
- type: map_at_5 |
|
value: 5.514 |
|
- type: mrr_at_1 |
|
value: 30.612000000000002 |
|
- type: mrr_at_10 |
|
value: 42.329 |
|
- type: mrr_at_100 |
|
value: 43.506 |
|
- type: mrr_at_1000 |
|
value: 43.506 |
|
- type: mrr_at_3 |
|
value: 38.775999999999996 |
|
- type: mrr_at_5 |
|
value: 39.592 |
|
- type: ndcg_at_1 |
|
value: 28.571 |
|
- type: ndcg_at_10 |
|
value: 20.301 |
|
- type: ndcg_at_100 |
|
value: 30.703999999999997 |
|
- type: ndcg_at_1000 |
|
value: 43.155 |
|
- type: ndcg_at_3 |
|
value: 22.738 |
|
- type: ndcg_at_5 |
|
value: 20.515 |
|
- type: precision_at_1 |
|
value: 30.612000000000002 |
|
- type: precision_at_10 |
|
value: 17.347 |
|
- type: precision_at_100 |
|
value: 6.327000000000001 |
|
- type: precision_at_1000 |
|
value: 1.443 |
|
- type: precision_at_3 |
|
value: 22.448999999999998 |
|
- type: precision_at_5 |
|
value: 19.184 |
|
- type: recall_at_1 |
|
value: 2.252 |
|
- type: recall_at_10 |
|
value: 13.206999999999999 |
|
- type: recall_at_100 |
|
value: 40.372 |
|
- type: recall_at_1000 |
|
value: 78.071 |
|
- type: recall_at_3 |
|
value: 5.189 |
|
- type: recall_at_5 |
|
value: 7.338 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 78.75399999999999 |
|
- type: ap |
|
value: 19.666483622175363 |
|
- type: f1 |
|
value: 61.575187470329176 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 66.00452744765137 |
|
- type: f1 |
|
value: 66.18291586829227 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 51.308747717084316 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 87.81069321094355 |
|
- type: cos_sim_ap |
|
value: 79.3576921453847 |
|
- type: cos_sim_f1 |
|
value: 71.75811286328685 |
|
- type: cos_sim_precision |
|
value: 70.89878959567345 |
|
- type: cos_sim_recall |
|
value: 72.63852242744063 |
|
- type: dot_accuracy |
|
value: 87.79877212850927 |
|
- type: dot_ap |
|
value: 79.35550320857683 |
|
- type: dot_f1 |
|
value: 71.78153446033811 |
|
- type: dot_precision |
|
value: 70.76923076923077 |
|
- type: dot_recall |
|
value: 72.82321899736148 |
|
- type: euclidean_accuracy |
|
value: 87.80473266972642 |
|
- type: euclidean_ap |
|
value: 79.35792655436586 |
|
- type: euclidean_f1 |
|
value: 71.75672148264161 |
|
- type: euclidean_precision |
|
value: 70.99690082644628 |
|
- type: euclidean_recall |
|
value: 72.53298153034301 |
|
- type: manhattan_accuracy |
|
value: 87.76300888120642 |
|
- type: manhattan_ap |
|
value: 79.33615959143606 |
|
- type: manhattan_f1 |
|
value: 71.73219978746015 |
|
- type: manhattan_precision |
|
value: 72.23113964686998 |
|
- type: manhattan_recall |
|
value: 71.2401055408971 |
|
- type: max_accuracy |
|
value: 87.81069321094355 |
|
- type: max_ap |
|
value: 79.35792655436586 |
|
- type: max_f1 |
|
value: 71.78153446033811 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 89.3778864439011 |
|
- type: cos_sim_ap |
|
value: 86.79005637312795 |
|
- type: cos_sim_f1 |
|
value: 79.14617791685293 |
|
- type: cos_sim_precision |
|
value: 76.66714780600462 |
|
- type: cos_sim_recall |
|
value: 81.79088389282414 |
|
- type: dot_accuracy |
|
value: 89.37206504443668 |
|
- type: dot_ap |
|
value: 86.78770290102123 |
|
- type: dot_f1 |
|
value: 79.14741392159786 |
|
- type: dot_precision |
|
value: 76.6897746967071 |
|
- type: dot_recall |
|
value: 81.76778564829073 |
|
- type: euclidean_accuracy |
|
value: 89.37594597741297 |
|
- type: euclidean_ap |
|
value: 86.7900899669397 |
|
- type: euclidean_f1 |
|
value: 79.13920845898953 |
|
- type: euclidean_precision |
|
value: 76.62028692956528 |
|
- type: euclidean_recall |
|
value: 81.8293809670465 |
|
- type: manhattan_accuracy |
|
value: 89.38758877634183 |
|
- type: manhattan_ap |
|
value: 86.78862564973224 |
|
- type: manhattan_f1 |
|
value: 79.1130985653065 |
|
- type: manhattan_precision |
|
value: 76.6592041597458 |
|
- type: manhattan_recall |
|
value: 81.72928857406838 |
|
- type: max_accuracy |
|
value: 89.38758877634183 |
|
- type: max_ap |
|
value: 86.7900899669397 |
|
- type: max_f1 |
|
value: 79.14741392159786 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/AFQMC |
|
name: MTEB AFQMC |
|
config: default |
|
split: validation |
|
revision: b44c3b011063adb25877c13823db83bb193913c4 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 50.01571015887356 |
|
- type: cos_sim_spearman |
|
value: 58.47419994907958 |
|
- type: euclidean_pearson |
|
value: 55.63582004345212 |
|
- type: euclidean_spearman |
|
value: 58.47514484211099 |
|
- type: manhattan_pearson |
|
value: 55.58487268871911 |
|
- type: manhattan_spearman |
|
value: 58.411916843600075 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/ATEC |
|
name: MTEB ATEC |
|
config: default |
|
split: test |
|
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 44.99231617937922 |
|
- type: cos_sim_spearman |
|
value: 55.459227458516416 |
|
- type: euclidean_pearson |
|
value: 52.98483376548224 |
|
- type: euclidean_spearman |
|
value: 55.45938733128155 |
|
- type: manhattan_pearson |
|
value: 52.946854805143964 |
|
- type: manhattan_spearman |
|
value: 55.4272663113618 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 52.946000000000005 |
|
- type: f1 |
|
value: 49.299873931232725 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/BQ |
|
name: MTEB BQ |
|
config: default |
|
split: test |
|
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 74.66979530294986 |
|
- type: cos_sim_spearman |
|
value: 77.59153258548018 |
|
- type: euclidean_pearson |
|
value: 76.5862988380262 |
|
- type: euclidean_spearman |
|
value: 77.59094368703879 |
|
- type: manhattan_pearson |
|
value: 76.6034419552102 |
|
- type: manhattan_spearman |
|
value: 77.6000715948404 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringP2P |
|
name: MTEB CLSClusteringP2P |
|
config: default |
|
split: test |
|
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 |
|
metrics: |
|
- type: v_measure |
|
value: 47.20931915009524 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringS2S |
|
name: MTEB CLSClusteringS2S |
|
config: default |
|
split: test |
|
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f |
|
metrics: |
|
- type: v_measure |
|
value: 45.787353610995474 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv1-reranking |
|
name: MTEB CMedQAv1 |
|
config: default |
|
split: test |
|
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df |
|
metrics: |
|
- type: map |
|
value: 86.37146026784607 |
|
- type: mrr |
|
value: 88.52309523809524 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv2-reranking |
|
name: MTEB CMedQAv2 |
|
config: default |
|
split: test |
|
revision: 23d186750531a14a0357ca22cd92d712fd512ea0 |
|
metrics: |
|
- type: map |
|
value: 87.40699302584699 |
|
- type: mrr |
|
value: 89.51591269841269 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CmedqaRetrieval |
|
name: MTEB CmedqaRetrieval |
|
config: default |
|
split: dev |
|
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.465 |
|
- type: map_at_10 |
|
value: 36.689 |
|
- type: map_at_100 |
|
value: 38.605000000000004 |
|
- type: map_at_1000 |
|
value: 38.718 |
|
- type: map_at_3 |
|
value: 32.399 |
|
- type: map_at_5 |
|
value: 34.784 |
|
- type: mrr_at_1 |
|
value: 37.234 |
|
- type: mrr_at_10 |
|
value: 45.634 |
|
- type: mrr_at_100 |
|
value: 46.676 |
|
- type: mrr_at_1000 |
|
value: 46.717 |
|
- type: mrr_at_3 |
|
value: 42.94 |
|
- type: mrr_at_5 |
|
value: 44.457 |
|
- type: ndcg_at_1 |
|
value: 37.234 |
|
- type: ndcg_at_10 |
|
value: 43.469 |
|
- type: ndcg_at_100 |
|
value: 51.048 |
|
- type: ndcg_at_1000 |
|
value: 52.925999999999995 |
|
- type: ndcg_at_3 |
|
value: 37.942 |
|
- type: ndcg_at_5 |
|
value: 40.253 |
|
- type: precision_at_1 |
|
value: 37.234 |
|
- type: precision_at_10 |
|
value: 9.745 |
|
- type: precision_at_100 |
|
value: 1.5879999999999999 |
|
- type: precision_at_1000 |
|
value: 0.183 |
|
- type: precision_at_3 |
|
value: 21.505 |
|
- type: precision_at_5 |
|
value: 15.729000000000001 |
|
- type: recall_at_1 |
|
value: 24.465 |
|
- type: recall_at_10 |
|
value: 54.559999999999995 |
|
- type: recall_at_100 |
|
value: 85.97200000000001 |
|
- type: recall_at_1000 |
|
value: 98.32499999999999 |
|
- type: recall_at_3 |
|
value: 38.047 |
|
- type: recall_at_5 |
|
value: 45.08 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/CMNLI |
|
name: MTEB Cmnli |
|
config: default |
|
split: validation |
|
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 84.50992182802165 |
|
- type: cos_sim_ap |
|
value: 91.81488661281966 |
|
- type: cos_sim_f1 |
|
value: 85.46855802524294 |
|
- type: cos_sim_precision |
|
value: 81.82207014542344 |
|
- type: cos_sim_recall |
|
value: 89.4552256254384 |
|
- type: dot_accuracy |
|
value: 84.50992182802165 |
|
- type: dot_ap |
|
value: 91.80547588176556 |
|
- type: dot_f1 |
|
value: 85.46492111446794 |
|
- type: dot_precision |
|
value: 81.95278969957081 |
|
- type: dot_recall |
|
value: 89.29155950432546 |
|
- type: euclidean_accuracy |
|
value: 84.49789536981359 |
|
- type: euclidean_ap |
|
value: 91.81495039620808 |
|
- type: euclidean_f1 |
|
value: 85.46817317373308 |
|
- type: euclidean_precision |
|
value: 81.93908193908193 |
|
- type: euclidean_recall |
|
value: 89.31494037877017 |
|
- type: manhattan_accuracy |
|
value: 84.46181599518941 |
|
- type: manhattan_ap |
|
value: 91.85400573633447 |
|
- type: manhattan_f1 |
|
value: 85.54283809312146 |
|
- type: manhattan_precision |
|
value: 81.51207115628971 |
|
- type: manhattan_recall |
|
value: 89.99298573766659 |
|
- type: max_accuracy |
|
value: 84.50992182802165 |
|
- type: max_ap |
|
value: 91.85400573633447 |
|
- type: max_f1 |
|
value: 85.54283809312146 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CovidRetrieval |
|
name: MTEB CovidRetrieval |
|
config: default |
|
split: dev |
|
revision: 1271c7809071a13532e05f25fb53511ffce77117 |
|
metrics: |
|
- type: map_at_1 |
|
value: 68.072 |
|
- type: map_at_10 |
|
value: 76.82900000000001 |
|
- type: map_at_100 |
|
value: 77.146 |
|
- type: map_at_1000 |
|
value: 77.14999999999999 |
|
- type: map_at_3 |
|
value: 74.939 |
|
- type: map_at_5 |
|
value: 76.009 |
|
- type: mrr_at_1 |
|
value: 68.282 |
|
- type: mrr_at_10 |
|
value: 76.818 |
|
- type: mrr_at_100 |
|
value: 77.13600000000001 |
|
- type: mrr_at_1000 |
|
value: 77.14 |
|
- type: mrr_at_3 |
|
value: 74.956 |
|
- type: mrr_at_5 |
|
value: 76.047 |
|
- type: ndcg_at_1 |
|
value: 68.282 |
|
- type: ndcg_at_10 |
|
value: 80.87299999999999 |
|
- type: ndcg_at_100 |
|
value: 82.191 |
|
- type: ndcg_at_1000 |
|
value: 82.286 |
|
- type: ndcg_at_3 |
|
value: 77.065 |
|
- type: ndcg_at_5 |
|
value: 78.965 |
|
- type: precision_at_1 |
|
value: 68.282 |
|
- type: precision_at_10 |
|
value: 9.452 |
|
- type: precision_at_100 |
|
value: 1.002 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 27.889000000000003 |
|
- type: precision_at_5 |
|
value: 17.682000000000002 |
|
- type: recall_at_1 |
|
value: 68.072 |
|
- type: recall_at_10 |
|
value: 93.467 |
|
- type: recall_at_100 |
|
value: 99.157 |
|
- type: recall_at_1000 |
|
value: 99.895 |
|
- type: recall_at_3 |
|
value: 83.14 |
|
- type: recall_at_5 |
|
value: 87.67099999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/DuRetrieval |
|
name: MTEB DuRetrieval |
|
config: default |
|
split: dev |
|
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.107999999999997 |
|
- type: map_at_10 |
|
value: 78.384 |
|
- type: map_at_100 |
|
value: 81.341 |
|
- type: map_at_1000 |
|
value: 81.384 |
|
- type: map_at_3 |
|
value: 54.462999999999994 |
|
- type: map_at_5 |
|
value: 68.607 |
|
- type: mrr_at_1 |
|
value: 88.94999999999999 |
|
- type: mrr_at_10 |
|
value: 92.31 |
|
- type: mrr_at_100 |
|
value: 92.379 |
|
- type: mrr_at_1000 |
|
value: 92.38300000000001 |
|
- type: mrr_at_3 |
|
value: 91.85799999999999 |
|
- type: mrr_at_5 |
|
value: 92.146 |
|
- type: ndcg_at_1 |
|
value: 88.94999999999999 |
|
- type: ndcg_at_10 |
|
value: 86.00999999999999 |
|
- type: ndcg_at_100 |
|
value: 89.121 |
|
- type: ndcg_at_1000 |
|
value: 89.534 |
|
- type: ndcg_at_3 |
|
value: 84.69200000000001 |
|
- type: ndcg_at_5 |
|
value: 83.678 |
|
- type: precision_at_1 |
|
value: 88.94999999999999 |
|
- type: precision_at_10 |
|
value: 41.065000000000005 |
|
- type: precision_at_100 |
|
value: 4.781 |
|
- type: precision_at_1000 |
|
value: 0.488 |
|
- type: precision_at_3 |
|
value: 75.75 |
|
- type: precision_at_5 |
|
value: 63.93 |
|
- type: recall_at_1 |
|
value: 26.107999999999997 |
|
- type: recall_at_10 |
|
value: 87.349 |
|
- type: recall_at_100 |
|
value: 97.14699999999999 |
|
- type: recall_at_1000 |
|
value: 99.287 |
|
- type: recall_at_3 |
|
value: 56.601 |
|
- type: recall_at_5 |
|
value: 73.381 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/EcomRetrieval |
|
name: MTEB EcomRetrieval |
|
config: default |
|
split: dev |
|
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 |
|
metrics: |
|
- type: map_at_1 |
|
value: 50.7 |
|
- type: map_at_10 |
|
value: 61.312999999999995 |
|
- type: map_at_100 |
|
value: 61.88399999999999 |
|
- type: map_at_1000 |
|
value: 61.9 |
|
- type: map_at_3 |
|
value: 58.983 |
|
- type: map_at_5 |
|
value: 60.238 |
|
- type: mrr_at_1 |
|
value: 50.7 |
|
- type: mrr_at_10 |
|
value: 61.312999999999995 |
|
- type: mrr_at_100 |
|
value: 61.88399999999999 |
|
- type: mrr_at_1000 |
|
value: 61.9 |
|
- type: mrr_at_3 |
|
value: 58.983 |
|
- type: mrr_at_5 |
|
value: 60.238 |
|
- type: ndcg_at_1 |
|
value: 50.7 |
|
- type: ndcg_at_10 |
|
value: 66.458 |
|
- type: ndcg_at_100 |
|
value: 69.098 |
|
- type: ndcg_at_1000 |
|
value: 69.539 |
|
- type: ndcg_at_3 |
|
value: 61.637 |
|
- type: ndcg_at_5 |
|
value: 63.92099999999999 |
|
- type: precision_at_1 |
|
value: 50.7 |
|
- type: precision_at_10 |
|
value: 8.260000000000002 |
|
- type: precision_at_100 |
|
value: 0.946 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 23.1 |
|
- type: precision_at_5 |
|
value: 14.979999999999999 |
|
- type: recall_at_1 |
|
value: 50.7 |
|
- type: recall_at_10 |
|
value: 82.6 |
|
- type: recall_at_100 |
|
value: 94.6 |
|
- type: recall_at_1000 |
|
value: 98.1 |
|
- type: recall_at_3 |
|
value: 69.3 |
|
- type: recall_at_5 |
|
value: 74.9 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/IFlyTek-classification |
|
name: MTEB IFlyTek |
|
config: default |
|
split: validation |
|
revision: 421605374b29664c5fc098418fe20ada9bd55f8a |
|
metrics: |
|
- type: accuracy |
|
value: 53.76683339746056 |
|
- type: f1 |
|
value: 40.026100192683714 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/JDReview-classification |
|
name: MTEB JDReview |
|
config: default |
|
split: test |
|
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b |
|
metrics: |
|
- type: accuracy |
|
value: 88.19887429643526 |
|
- type: ap |
|
value: 59.02998120976959 |
|
- type: f1 |
|
value: 83.3659125921227 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/LCQMC |
|
name: MTEB LCQMC |
|
config: default |
|
split: test |
|
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 72.53955204856854 |
|
- type: cos_sim_spearman |
|
value: 76.28996886746215 |
|
- type: euclidean_pearson |
|
value: 75.31184890026394 |
|
- type: euclidean_spearman |
|
value: 76.28984471300522 |
|
- type: manhattan_pearson |
|
value: 75.36930361638623 |
|
- type: manhattan_spearman |
|
value: 76.34021995551348 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/Mmarco-reranking |
|
name: MTEB MMarcoReranking |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 23.63666512532725 |
|
- type: mrr |
|
value: 22.49642857142857 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MMarcoRetrieval |
|
name: MTEB MMarcoRetrieval |
|
config: default |
|
split: dev |
|
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 |
|
metrics: |
|
- type: map_at_1 |
|
value: 60.645 |
|
- type: map_at_10 |
|
value: 69.733 |
|
- type: map_at_100 |
|
value: 70.11699999999999 |
|
- type: map_at_1000 |
|
value: 70.135 |
|
- type: map_at_3 |
|
value: 67.585 |
|
- type: map_at_5 |
|
value: 68.904 |
|
- type: mrr_at_1 |
|
value: 62.765 |
|
- type: mrr_at_10 |
|
value: 70.428 |
|
- type: mrr_at_100 |
|
value: 70.77 |
|
- type: mrr_at_1000 |
|
value: 70.785 |
|
- type: mrr_at_3 |
|
value: 68.498 |
|
- type: mrr_at_5 |
|
value: 69.69 |
|
- type: ndcg_at_1 |
|
value: 62.765 |
|
- type: ndcg_at_10 |
|
value: 73.83 |
|
- type: ndcg_at_100 |
|
value: 75.593 |
|
- type: ndcg_at_1000 |
|
value: 76.05199999999999 |
|
- type: ndcg_at_3 |
|
value: 69.66499999999999 |
|
- type: ndcg_at_5 |
|
value: 71.929 |
|
- type: precision_at_1 |
|
value: 62.765 |
|
- type: precision_at_10 |
|
value: 9.117 |
|
- type: precision_at_100 |
|
value: 1.0 |
|
- type: precision_at_1000 |
|
value: 0.104 |
|
- type: precision_at_3 |
|
value: 26.323 |
|
- type: precision_at_5 |
|
value: 16.971 |
|
- type: recall_at_1 |
|
value: 60.645 |
|
- type: recall_at_10 |
|
value: 85.907 |
|
- type: recall_at_100 |
|
value: 93.947 |
|
- type: recall_at_1000 |
|
value: 97.531 |
|
- type: recall_at_3 |
|
value: 74.773 |
|
- type: recall_at_5 |
|
value: 80.16799999999999 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 76.25084061869536 |
|
- type: f1 |
|
value: 73.65064492827022 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 77.2595830531271 |
|
- type: f1 |
|
value: 77.15217273559321 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MedicalRetrieval |
|
name: MTEB MedicalRetrieval |
|
config: default |
|
split: dev |
|
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 |
|
metrics: |
|
- type: map_at_1 |
|
value: 52.400000000000006 |
|
- type: map_at_10 |
|
value: 58.367000000000004 |
|
- type: map_at_100 |
|
value: 58.913000000000004 |
|
- type: map_at_1000 |
|
value: 58.961 |
|
- type: map_at_3 |
|
value: 56.882999999999996 |
|
- type: map_at_5 |
|
value: 57.743 |
|
- type: mrr_at_1 |
|
value: 52.400000000000006 |
|
- type: mrr_at_10 |
|
value: 58.367000000000004 |
|
- type: mrr_at_100 |
|
value: 58.913000000000004 |
|
- type: mrr_at_1000 |
|
value: 58.961 |
|
- type: mrr_at_3 |
|
value: 56.882999999999996 |
|
- type: mrr_at_5 |
|
value: 57.743 |
|
- type: ndcg_at_1 |
|
value: 52.400000000000006 |
|
- type: ndcg_at_10 |
|
value: 61.329 |
|
- type: ndcg_at_100 |
|
value: 64.264 |
|
- type: ndcg_at_1000 |
|
value: 65.669 |
|
- type: ndcg_at_3 |
|
value: 58.256 |
|
- type: ndcg_at_5 |
|
value: 59.813 |
|
- type: precision_at_1 |
|
value: 52.400000000000006 |
|
- type: precision_at_10 |
|
value: 7.07 |
|
- type: precision_at_100 |
|
value: 0.851 |
|
- type: precision_at_1000 |
|
value: 0.096 |
|
- type: precision_at_3 |
|
value: 20.732999999999997 |
|
- type: precision_at_5 |
|
value: 13.200000000000001 |
|
- type: recall_at_1 |
|
value: 52.400000000000006 |
|
- type: recall_at_10 |
|
value: 70.7 |
|
- type: recall_at_100 |
|
value: 85.1 |
|
- type: recall_at_1000 |
|
value: 96.39999999999999 |
|
- type: recall_at_3 |
|
value: 62.2 |
|
- type: recall_at_5 |
|
value: 66.0 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/MultilingualSentiment-classification |
|
name: MTEB MultilingualSentiment |
|
config: default |
|
split: validation |
|
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a |
|
metrics: |
|
- type: accuracy |
|
value: 77.42333333333333 |
|
- type: f1 |
|
value: 77.24849313989888 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/OCNLI |
|
name: MTEB Ocnli |
|
config: default |
|
split: validation |
|
revision: 66e76a618a34d6d565d5538088562851e6daa7ec |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 80.12994044396319 |
|
- type: cos_sim_ap |
|
value: 85.21793541189636 |
|
- type: cos_sim_f1 |
|
value: 81.91489361702128 |
|
- type: cos_sim_precision |
|
value: 75.55753791257806 |
|
- type: cos_sim_recall |
|
value: 89.44033790918691 |
|
- type: dot_accuracy |
|
value: 80.12994044396319 |
|
- type: dot_ap |
|
value: 85.22568672443236 |
|
- type: dot_f1 |
|
value: 81.91489361702128 |
|
- type: dot_precision |
|
value: 75.55753791257806 |
|
- type: dot_recall |
|
value: 89.44033790918691 |
|
- type: euclidean_accuracy |
|
value: 80.12994044396319 |
|
- type: euclidean_ap |
|
value: 85.21643342357407 |
|
- type: euclidean_f1 |
|
value: 81.8830242510699 |
|
- type: euclidean_precision |
|
value: 74.48096885813149 |
|
- type: euclidean_recall |
|
value: 90.91869060190075 |
|
- type: manhattan_accuracy |
|
value: 80.5630752571738 |
|
- type: manhattan_ap |
|
value: 85.27682975032671 |
|
- type: manhattan_f1 |
|
value: 82.03883495145631 |
|
- type: manhattan_precision |
|
value: 75.92093441150045 |
|
- type: manhattan_recall |
|
value: 89.22914466737065 |
|
- type: max_accuracy |
|
value: 80.5630752571738 |
|
- type: max_ap |
|
value: 85.27682975032671 |
|
- type: max_f1 |
|
value: 82.03883495145631 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/OnlineShopping-classification |
|
name: MTEB OnlineShopping |
|
config: default |
|
split: test |
|
revision: e610f2ebd179a8fda30ae534c3878750a96db120 |
|
metrics: |
|
- type: accuracy |
|
value: 94.47999999999999 |
|
- type: ap |
|
value: 92.81177660844013 |
|
- type: f1 |
|
value: 94.47045470502114 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/PAWSX |
|
name: MTEB PAWSX |
|
config: default |
|
split: test |
|
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 46.13154582182421 |
|
- type: cos_sim_spearman |
|
value: 50.21718723757444 |
|
- type: euclidean_pearson |
|
value: 49.41535243569054 |
|
- type: euclidean_spearman |
|
value: 50.21831909208907 |
|
- type: manhattan_pearson |
|
value: 49.50756578601167 |
|
- type: manhattan_spearman |
|
value: 50.229118655684566 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/QBQTC |
|
name: MTEB QBQTC |
|
config: default |
|
split: test |
|
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.787794367421956 |
|
- type: cos_sim_spearman |
|
value: 31.81774306987836 |
|
- type: euclidean_pearson |
|
value: 29.809436608089495 |
|
- type: euclidean_spearman |
|
value: 31.817379098812165 |
|
- type: manhattan_pearson |
|
value: 30.377027186607787 |
|
- type: manhattan_spearman |
|
value: 32.42286865176827 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.99292517797305 |
|
- type: cos_sim_spearman |
|
value: 76.52287451692155 |
|
- type: euclidean_pearson |
|
value: 81.11616055544546 |
|
- type: euclidean_spearman |
|
value: 76.525387473028 |
|
- type: manhattan_pearson |
|
value: 81.14367598670032 |
|
- type: manhattan_spearman |
|
value: 76.55571799438607 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 61.29839896616376 |
|
- type: cos_sim_spearman |
|
value: 67.36328213286453 |
|
- type: euclidean_pearson |
|
value: 64.33899267794008 |
|
- type: euclidean_spearman |
|
value: 67.36552580196211 |
|
- type: manhattan_pearson |
|
value: 65.20010308796022 |
|
- type: manhattan_spearman |
|
value: 67.50982972902 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/STSB |
|
name: MTEB STSB |
|
config: default |
|
split: test |
|
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.23278996774297 |
|
- type: cos_sim_spearman |
|
value: 81.369375466486 |
|
- type: euclidean_pearson |
|
value: 79.91030863727944 |
|
- type: euclidean_spearman |
|
value: 81.36824495466793 |
|
- type: manhattan_pearson |
|
value: 79.88047052896854 |
|
- type: manhattan_spearman |
|
value: 81.3369604332008 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/T2Reranking |
|
name: MTEB T2Reranking |
|
config: default |
|
split: dev |
|
revision: 76631901a18387f85eaa53e5450019b87ad58ef9 |
|
metrics: |
|
- type: map |
|
value: 68.109205221286 |
|
- type: mrr |
|
value: 78.40703619520477 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/T2Retrieval |
|
name: MTEB T2Retrieval |
|
config: default |
|
split: dev |
|
revision: 8731a845f1bf500a4f111cf1070785c793d10e64 |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.704 |
|
- type: map_at_10 |
|
value: 75.739 |
|
- type: map_at_100 |
|
value: 79.606 |
|
- type: map_at_1000 |
|
value: 79.666 |
|
- type: map_at_3 |
|
value: 52.803 |
|
- type: map_at_5 |
|
value: 65.068 |
|
- type: mrr_at_1 |
|
value: 88.48899999999999 |
|
- type: mrr_at_10 |
|
value: 91.377 |
|
- type: mrr_at_100 |
|
value: 91.474 |
|
- type: mrr_at_1000 |
|
value: 91.47800000000001 |
|
- type: mrr_at_3 |
|
value: 90.846 |
|
- type: mrr_at_5 |
|
value: 91.18 |
|
- type: ndcg_at_1 |
|
value: 88.48899999999999 |
|
- type: ndcg_at_10 |
|
value: 83.581 |
|
- type: ndcg_at_100 |
|
value: 87.502 |
|
- type: ndcg_at_1000 |
|
value: 88.1 |
|
- type: ndcg_at_3 |
|
value: 84.433 |
|
- type: ndcg_at_5 |
|
value: 83.174 |
|
- type: precision_at_1 |
|
value: 88.48899999999999 |
|
- type: precision_at_10 |
|
value: 41.857 |
|
- type: precision_at_100 |
|
value: 5.039 |
|
- type: precision_at_1000 |
|
value: 0.517 |
|
- type: precision_at_3 |
|
value: 73.938 |
|
- type: precision_at_5 |
|
value: 62.163000000000004 |
|
- type: recall_at_1 |
|
value: 26.704 |
|
- type: recall_at_10 |
|
value: 83.092 |
|
- type: recall_at_100 |
|
value: 95.659 |
|
- type: recall_at_1000 |
|
value: 98.779 |
|
- type: recall_at_3 |
|
value: 54.678000000000004 |
|
- type: recall_at_5 |
|
value: 68.843 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/TNews-classification |
|
name: MTEB TNews |
|
config: default |
|
split: validation |
|
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 |
|
metrics: |
|
- type: accuracy |
|
value: 51.235 |
|
- type: f1 |
|
value: 48.14373844331604 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringP2P |
|
name: MTEB ThuNewsClusteringP2P |
|
config: default |
|
split: test |
|
revision: 5798586b105c0434e4f0fe5e767abe619442cf93 |
|
metrics: |
|
- type: v_measure |
|
value: 87.42930040493792 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringS2S |
|
name: MTEB ThuNewsClusteringS2S |
|
config: default |
|
split: test |
|
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d |
|
metrics: |
|
- type: v_measure |
|
value: 87.90254094650042 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/VideoRetrieval |
|
name: MTEB VideoRetrieval |
|
config: default |
|
split: dev |
|
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 |
|
metrics: |
|
- type: map_at_1 |
|
value: 54.900000000000006 |
|
- type: map_at_10 |
|
value: 64.92 |
|
- type: map_at_100 |
|
value: 65.424 |
|
- type: map_at_1000 |
|
value: 65.43900000000001 |
|
- type: map_at_3 |
|
value: 63.132999999999996 |
|
- type: map_at_5 |
|
value: 64.208 |
|
- type: mrr_at_1 |
|
value: 54.900000000000006 |
|
- type: mrr_at_10 |
|
value: 64.92 |
|
- type: mrr_at_100 |
|
value: 65.424 |
|
- type: mrr_at_1000 |
|
value: 65.43900000000001 |
|
- type: mrr_at_3 |
|
value: 63.132999999999996 |
|
- type: mrr_at_5 |
|
value: 64.208 |
|
- type: ndcg_at_1 |
|
value: 54.900000000000006 |
|
- type: ndcg_at_10 |
|
value: 69.41199999999999 |
|
- type: ndcg_at_100 |
|
value: 71.824 |
|
- type: ndcg_at_1000 |
|
value: 72.301 |
|
- type: ndcg_at_3 |
|
value: 65.79700000000001 |
|
- type: ndcg_at_5 |
|
value: 67.713 |
|
- type: precision_at_1 |
|
value: 54.900000000000006 |
|
- type: precision_at_10 |
|
value: 8.33 |
|
- type: precision_at_100 |
|
value: 0.9450000000000001 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 24.5 |
|
- type: precision_at_5 |
|
value: 15.620000000000001 |
|
- type: recall_at_1 |
|
value: 54.900000000000006 |
|
- type: recall_at_10 |
|
value: 83.3 |
|
- type: recall_at_100 |
|
value: 94.5 |
|
- type: recall_at_1000 |
|
value: 98.4 |
|
- type: recall_at_3 |
|
value: 73.5 |
|
- type: recall_at_5 |
|
value: 78.10000000000001 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/waimai-classification |
|
name: MTEB Waimai |
|
config: default |
|
split: test |
|
revision: 339287def212450dcaa9df8c22bf93e9980c7023 |
|
metrics: |
|
- type: accuracy |
|
value: 88.63 |
|
- type: ap |
|
value: 73.78658340897097 |
|
- type: f1 |
|
value: 87.16764294033919 |
|
--- |
|
|
|
## gte-Qwen1.5-7B-instruct |
|
|
|
**gte-Qwen1.5-7B-instruct** is the latest addition to the gte embedding family. This model has been engineered starting from the [Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) LLM, drawing on the robust natural language processing capabilities of the Qwen1.5-7B model. Enhanced through our sophisticated embedding training techniques, the model incorporates several key advancements: |
|
|
|
- Integration of bidirectional attention mechanisms, enriching its contextual understanding. |
|
- Instruction tuning, applied solely on the query side for streamlined efficiency |
|
- Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks. |
|
|
|
We also present [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) and [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5), |
|
SOTA English embedding models that achieve state-of-the-art scores on the MTEB benchmark within the same model size category and support the context length of up to 8192. |
|
|
|
## Model Information |
|
- Model Size: 7B |
|
- Embedding Dimension: 4096 |
|
- Max Input Tokens: 32k |
|
|
|
## Requirements |
|
``` |
|
transformers>=4.39.2 |
|
flash_attn>=2.5.6 |
|
``` |
|
## Usage |
|
|
|
### Sentence Transformers |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
model = SentenceTransformer("Alibaba-NLP/gte-Qwen1.5-7B-instruct", trust_remote_code=True) |
|
# In case you want to reduce the maximum length: |
|
model.max_seq_length = 8192 |
|
|
|
queries = [ |
|
"how much protein should a female eat", |
|
"summit define", |
|
] |
|
documents = [ |
|
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", |
|
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments.", |
|
] |
|
|
|
query_embeddings = model.encode(queries, prompt_name="query") |
|
document_embeddings = model.encode(documents) |
|
|
|
scores = (query_embeddings @ document_embeddings.T) * 100 |
|
print(scores.tolist()) |
|
# [[70.00668334960938, 8.184843063354492], [14.62419319152832, 77.71407318115234]] |
|
``` |
|
|
|
Observe the [config_sentence_transformers.json](config_sentence_transformers.json) to see all pre-built prompt names. Otherwise, you can use `model.encode(queries, prompt="Instruct: ...\nQuery: "` to use a custom prompt of your choice. |
|
|
|
### Transformers |
|
|
|
```python |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
def last_token_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
if left_padding: |
|
return last_hidden_states[:, -1] |
|
else: |
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
batch_size = last_hidden_states.shape[0] |
|
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] |
|
|
|
|
|
def get_detailed_instruct(task_description: str, query: str) -> str: |
|
return f'Instruct: {task_description}\nQuery: {query}' |
|
|
|
|
|
# Each query must come with a one-sentence instruction that describes the task |
|
task = 'Given a web search query, retrieve relevant passages that answer the query' |
|
queries = [ |
|
get_detailed_instruct(task, 'how much protein should a female eat'), |
|
get_detailed_instruct(task, 'summit define') |
|
] |
|
# No need to add instruction for retrieval documents |
|
documents = [ |
|
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", |
|
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." |
|
] |
|
input_texts = queries + documents |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-Qwen1.5-7B-instruct', trust_remote_code=True) |
|
model = AutoModel.from_pretrained('Alibaba-NLP/gte-Qwen1.5-7B-instruct', trust_remote_code=True) |
|
|
|
max_length = 8192 |
|
|
|
# Tokenize the input texts |
|
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt') |
|
outputs = model(**batch_dict) |
|
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
|
|
# normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:2] @ embeddings[2:].T) * 100 |
|
print(scores.tolist()) |
|
# [[70.00666809082031, 8.184867858886719], [14.62420654296875, 77.71405792236328]] |
|
``` |
|
|
|
## Evaluation |
|
|
|
### MTEB & C-MTEB |
|
|
|
You can use the [scripts/eval_mteb.py](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct/blob/main/scripts/eval_mteb.py) to reproduce the following result of **gte-Qwen1.5-7B-instruct** on MTEB(English)/C-MTEB(Chinese): |
|
|
|
| Model Name | MTEB(56) | C-MTEB(35) | |
|
|:----:|:---:|:---:| |
|
| [bge-base-en-1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 64.23 | - | |
|
| [bge-large-en-1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 63.55 | - | |
|
| [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 65.39 | - | |
|
| [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 64.11 | - | |
|
| [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 64.68 | - | |
|
| [acge_text_embedding](https://huggingface.co/aspire/acge_text_embedding) | - | 69.07 | |
|
| [stella-mrl-large-zh-v3.5-1792d](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d)] | - | 68.55 | |
|
| [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh) | - | 66.72 | |
|
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 59.45 | 56.21 | |
|
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 61.50 | 58.81 | |
|
| [e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) | 66.63 | 60.81 | |
|
| [**gte-Qwen1.5-7B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | 67.34 | 69.52 | |
|
|
|
## Citation |
|
|
|
If you find our paper or models helpful, please consider cite: |
|
``` |
|
@article{li2023towards, |
|
title={Towards general text embeddings with multi-stage contrastive learning}, |
|
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan}, |
|
journal={arXiv preprint arXiv:2308.03281}, |
|
year={2023} |
|
} |
|
``` |