llama3-8b-sft-qlora / README.md
AliHmlii's picture
Model save
39a391e verified
metadata
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
license: llama3
tags:
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: llama3-8b-sft-qlora
    results: []

llama3-8b-sft-qlora

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Framework versions

  • PEFT 0.13.1
  • Transformers 4.45.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.0