C1-Topic-Model-100 / README.md
AlexanderHolmes0's picture
Add BERTopic model
f3f3f0b verified
|
raw
history blame
10.5 kB
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# C1-topic-model-100
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("AlexanderHolmes0/C1-topic-model-100")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 100
* Number of training documents: 112332
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | stop - people - need - help - banking | 84 | -1_stop_people_need_help |
| 0 | account - card - customer - service - phone | 4738 | 0_account_card_customer_service |
| 1 | game - thank - win - team - bazinga_sb | 21155 | 1_game_thank_win_team |
| 2 | app - need - stop - help - lol | 11918 | 2_app_need_stop_help |
| 3 | card - credit - account - customer - told | 11946 | 3_card_credit_account_customer |
| 4 | friend - request - friends - send - mind | 6152 | 4_friend_request_friends_send |
| 5 | community - event - lounge - thank - presented | 3403 | 5_community_event_lounge_thank |
| 6 | trading - whatsapp - forex - investment - profit | 4398 | 6_trading_whatsapp_forex_investment |
| 7 | - - - - | 2804 | 7____ |
| 8 | ho - genial - travolta - john - love | 1191 | 8_ho_genial_travolta_john |
| 9 | santa - john - travolta - love - movie | 1157 | 9_santa_john_travolta_love |
| 10 | que - en - la - para - el | 1695 | 10_que_en_la_para |
| 11 | worst - service - company - customer - bank | 1532 | 11_worst_service_company_customer |
| 12 | love - awesome - happy - best - great | 2417 | 12_love_awesome_happy_best |
| 13 | people - blessed - grands - cus - paying | 2736 | 13_people_blessed_grands_cus |
| 14 | later - connect - definitely - inbox - hello | 896 | 14_later_connect_definitely_inbox |
| 15 | shimmerr - kt - txscapitalone - capit - word | 4157 | 15_shimmerr_kt_txscapitalone_capit |
| 16 | credit - card - score - limit - pay | 535 | 16_credit_card_score_limit |
| 17 | spell - dr - caster - ex - lover | 5072 | 17_spell_dr_caster_ex |
| 18 | love - business - thank - credit - best | 672 | 18_love_business_thank_credit |
| 19 | links - mm - click - nutshell - join | 2133 | 19_links_mm_click_nutshell |
| 20 | travel - points - venture - miles - flights | 515 | 20_travel_points_venture_miles |
| 21 | slash - guitar - guitarist - riff - song | 1271 | 21_slash_guitar_guitarist_riff |
| 22 | reachout - miller - david - comes - investing | 630 | 22_reachout_miller_david_comes |
| 23 | preston - mourning - underneath - commenting - kelly | 303 | 23_preston_mourning_underneath_commenting |
| 24 | tnt - qbs - reminded - tune - headed | 211 | 24_tnt_qbs_reminded_tune |
| 25 | working - website - isn - expired - enter | 222 | 25_working_website_isn_expired |
| 26 | suck - sucks - lol - fake - sounds | 947 | 26_suck_sucks_lol_fake |
| 27 | love - cute - absolutely - ittttt - lovelove | 1603 | 27_love_cute_absolutely_ittttt |
| 28 | mobile - app - digital - options - shopping | 292 | 28_mobile_app_digital_options |
| 29 | cardigan - flannel - plaid - tsxccapitalone - cardigans | 554 | 29_cardigan_flannel_plaid_tsxccapitalone |
| 30 | presale - event - taylorswift - venue - np | 191 | 30_presale_event_taylorswift_venue |
| 31 | donna - pescow - annette - fever - looks | 403 | 31_donna_pescow_annette_fever |
| 32 | card - best - great - love - cards | 340 | 32_card_best_great_love |
| 33 | flannel - flannnel - scymbags - rsxcapitalone - pumpkinseason | 632 | 33_flannel_flannnel_scymbags_rsxcapitalone |
| 34 | car - auto - navigator - cars - buying | 172 | 34_car_auto_navigator_cars |
| 35 | 𝗍𝗁𝖺𝗍 - 𝖺𝗇𝖽 - π—ˆπ—Žπ—‹ - π—’π—ˆπ—Ž - π—π—ˆ | 566 | 35_𝗍𝗁𝖺𝗍_𝖺𝗇𝖽_π—ˆπ—Žπ—‹_π—’π—ˆπ—Ž |
| 36 | sure - true - correct - yessir - yea | 416 | 36_sure_true_correct_yessir |
| 37 | beard - chef - awards - beardfoundation - james | 329 | 37_beard_chef_awards_beardfoundation |
| 38 | worst - bank - service - customer - fucking | 223 | 38_worst_bank_service_customer |
| 39 | bank - banks - banking - best - chairman | 1098 | 39_bank_banks_banking_best |
| 40 | student - unlimited - key - quicksilver - cash | 397 | 40_student_unlimited_key_quicksilver |
| 41 | teambradgers - hardwood - winning - head - winners | 343 | 41_teambradgers_hardwood_winning_head |
| 42 | giveway - tstheerastour - tsxcapitalone - givesway - givaway | 178 | 42_giveway_tstheerastour_tsxcapitalone_givesway |
| 43 | love - awesome - cute - omg - absolutely | 155 | 43_love_awesome_cute_omg |
| 44 | postdoctoral - ΞΊΞ±ΞΉ - 𝐭𝐨 - 𝐚𝐧𝐝 - Ψ±Ψ³ΩˆΩ„ | 386 | 44_postdoctoral_ΞΊΞ±ΞΉ_𝐭𝐨_𝐚𝐧𝐝 |
| 45 | platinum - excluded - cards - credit - secured | 357 | 45_platinum_excluded_cards_credit |
| 46 | solving - ai - data - methods - learning | 127 | 46_solving_ai_data_methods |
| 47 | dm - sent - haven - gotten - dms | 219 | 47_dm_sent_haven_gotten |
| 48 | nice - cool - good - cute - dimples | 289 | 48_nice_cool_good_cute |
| 49 | cafΓ©s - branches - offices - closed - holiday | 206 | 49_cafΓ©s_branches_offices_closed |
| 50 | gt - page - javier - facebook - sergio | 130 | 50_gt_page_javier_facebook |
| 51 | fault - mailbox - buyer - flood - vendors | 191 | 51_fault_mailbox_buyer_flood |
| 52 | responsibility - expect - accept - unethical - perjury | 89 | 52_responsibility_expect_accept_unethical |
| 53 | holiday - encore - noΓ«l - livestream - songs | 88 | 53_holiday_encore_noΓ«l_livestream |
| 54 | bio - webinar - mcws - capitalonecafe - wcwsselfie | 44 | 54_bio_webinar_mcws_capitalonecafe |
| 55 | agree - true - haha - ha - right | 565 | 55_agree_true_haha_ha |
| 56 | word - code - shib - enter - biiiish | 324 | 56_word_code_shib_enter |
| 57 | uber - eats - complimentary - orders - nov | 113 | 57_uber_eats_complimentary_orders |
| 58 | bbb - tracker - scams - scam - scamtracker | 46 | 58_bbb_tracker_scams_scam |
| 59 | count - days - fucking - bitch - fuckin | 85 | 59_count_days_fucking_bitch |
| 60 | tradelines - cpn - repair - removal - inquiries | 89 | 60_tradelines_cpn_repair_removal |
| 61 | gas - prices - inflation - cars - electric | 102 | 61_gas_prices_inflation_cars |
| 62 | spark - antonelli - preset - cash - cheese | 159 | 62_spark_antonelli_preset_cash |
| 63 | waiting - room - queue - open - lounge | 57 | 63_waiting_room_queue_open |
| 64 | need - want - got - officce - wish | 455 | 64_need_want_got_officce |
| 65 | taher - bapary - abu - wow - baah | 371 | 65_taher_bapary_abu_wow |
| 66 | atos - story - cloud - datacenter - upl | 46 | 66_atos_story_cloud_datacenter |
| 67 | song - itunes - radio - rainy - bts | 77 | 67_song_itunes_radio_rainy |
| 68 | dining - cardholders - reservations - restaurants - rated | 163 | 68_dining_cardholders_reservations_restaurants |
| 69 | grant - apply - upfront - federal - government | 69 | 69_grant_apply_upfront_federal |
| 70 | scarf - tsgiveaway - towel - tote - bag | 103 | 70_scarf_tsgiveaway_towel_tote |
| 71 | annual - fee - fees - loffland - tam | 53 | 71_annual_fee_fees_loffland |
| 72 | unsubcribe - mailing - stop - remove - list | 204 | 72_unsubcribe_mailing_stop_remove |
| 73 | crooks - money - scumbags - stole - thieves | 106 | 73_crooks_money_scumbags_stole |
| 74 | mcws - rebs - omaha - wps - toddy | 633 | 74_mcws_rebs_omaha_wps |
| 75 | bejeweled - ok - hi - mm - tay | 105 | 75_bejeweled_ok_hi_mm |
| 76 | pov - misclicked - clicked - clicky - pa | 719 | 76_pov_misclicked_clicked_clicky |
| 77 | financial - tips - budget - empowerment - healthy | 174 | 77_financial_tips_budget_empowerment |
| 78 | wynn - match - brady - hole - las | 379 | 78_wynn_match_brady_hole |
| 79 | upgrade - upgrades - upgraded - update - seats | 70 | 79_upgrade_upgrades_upgraded_update |
| 80 | step - tapn - wit - walking - method | 142 | 80_step_tapn_wit_walking |
| 81 | facilitate - form - cybersuppospy - communicate - following | 120 | 81_facilitate_form_cybersuppospy_communicate |
| 82 | debt - credit - need - card - dm | 46 | 82_debt_credit_need_card |
| 83 | press - interactive - seat - conference - hot | 375 | 83_press_interactive_seat_conference |
| 84 | minority - jackie - scholarship - nation - donating | 31 | 84_minority_jackie_scholarship_nation |
| 85 | chefs - chef - exclusive - dining - cardholders | 39 | 85_chefs_chef_exclusive_dining |
| 86 | flannel - cardigan - scarf - jk - code | 30 | 86_flannel_cardigan_scarf_jk |
| 87 | sell - sold - sellout - selling - tim | 91 | 87_sell_sold_sellout_selling |
| 88 | movie - saw - watch - watching - video | 90 | 88_movie_saw_watch_watching |
| 89 | denied - approved - applied - pre - tried | 411 | 89_denied_approved_applied_pre |
| 90 | balali - dizabali - manager - blame - changing | 188 | 90_balali_dizabali_manager_blame |
| 91 | office - direct - contact - don - erica | 24 | 91_office_direct_contact_don |
| 92 | stimulus - latest - mon - dates - track | 60 | 92_stimulus_latest_mon_dates |
| 93 | itbot - cash - gyvi - creditcard - best | 23 | 93_itbot_cash_gyvi_creditcard |
| 94 | pakistan - donate - relief - flood - activities | 199 | 94_pakistan_donate_relief_flood |
| 95 | lottery - winner - jackpot - fan - million | 27 | 95_lottery_winner_jackpot_fan |
| 96 | payments - sending - email - payment - suppo | 77 | 96_payments_sending_email_payment |
| 97 | cardholders - star - mlb - ultimate - allstarweek | 127 | 97_cardholders_star_mlb_ultimate |
| 98 | reds - disparage - toss - stats - count | 57 | 98_reds_disparage_toss_stats |
</details>
## Training hyperparameters
* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: 100
* seed_topic_list: None
* top_n_words: 10
* verbose: True
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 1.26.4
* HDBSCAN: 0.8.33
* UMAP: 0.5.5
* Pandas: 2.0.3
* Scikit-Learn: 1.4.1.post1
* Sentence-transformers: 2.5.1
* Transformers: 4.40.0
* Numba: 0.59.1
* Plotly: 5.20.0
* Python: 3.11.8